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Reinforcement Learning (RL)
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RL Challenges
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Double DQN requires million samples to solve Atari Robot directly learns from human demonstrations.
games [van Hasselt et al., 2016].

» RL aims to learn the (near-) optimal decisions from interactions with environments
® |t often requires a large amount of samples.
® |t's hard to design proper reward function for each particular task.

> In some real-world scenarios, it is easy to obtain expert-level demonstrations.
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Imitation Learning (IL)

S 'y

Learner Expert
m(als) (s,a) ~ g

» Given trajectories D = {(s},a}, 4, 5%, a%; )}, collected by expert policy g, which is
(near-) optimal.

> Agent directly learns a policy from D without explicit rewards.

> IL does not rely on trails-and-errors and could be more sample-efficient .
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Markov Decision Process

> Consider a finite episodic Markov Decision Process (S,A, H, {Ph}he[H] , {Th}he[H] ,p).
® S and A are the state and action space, respectively.

® ru(s,a) €[0,1] is deterministic reward received after taking the action a in state s at step h.

P, (s'|s,a) specifies the transition probability of s’ conditioned on s and a at step h.

® H is the horizon length.

The initial state s; is sampled from the initial state distribution p.

Tian Xu (Nanjing University) The Fundamental Limits of Imitation Learning March 26, 2021 6 /47



Markov Decision Process

> A deterministic policy is a collection of functions 7, : S - A for all h e [H]. We use T4t

to denote the set of all deterministic policies.
> We assume that the expert policy is deterministic and optimal.

> The policy value J(7) = E [ZhH:1 rh(sh,ah)].
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Settings

> There are mainly three settings in IL.

® No-interaction: Provided with expert dataset, the learner is not allowed to interact with the
MDP.

® Known-transition: Besides expert dataset, the learner additionally knowns the MDP

transition function.

® Active: Without expert dataset in advance, the learner is allowed to interact with the MDP
for m episodes and is provided access to an oracle which outputs the expert action 7*(s) at

the learner’s current state s.

> Intuitively, the hardness of problems under different settings: No-interaction >

Known-transition, No-interaction > (x) Active.
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» In IL, our objective is to minimize the policy value gap:

rn7rin J(rg)-J(r) < max J(m)

» There are mainly two classes of methods: behavioral cloning (BC) [Pomerleau, 1991] and
adversarial-based imitation [Abbeel and Ng, 2004, Ho and Ermon, 2016].

® BC: mimic by action distribution matching with supervised learning.

® Adversarial-based imitation: firstly infer the reward function, then learn a (sub-) optimal

policy with the recovered reward.
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Behavioral Cloning
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Behavioral Cloning (BC)

(SO’ llo)
(51, a])
(52, a2)

» Given expert demonstrations: D = {(s},al, s}, s%, a%; )}
» BC reduces IL to supervised learning:
® BC firstly splits trajectories into labeled data with states as inputs and actions as targets.

® Then BC learns a mapping (e.g., neural networks) from state space to action space via any
supervised learning methods.

Tian Xu (Nanjing University) The Fundamental Limits of Imitation Learning March 26, 2021 11 / 47



Behavioral Cloning

» Mathematically, BC learns a policy to minimize the population 0 — 1 risk.
* 1 H *
Lpop (T, 77) = i ;Ew;* [Eqmr, (fs) [L(a = 77 (s:))]],

where fL,(s) =Prq+(s; = s).

> With expert dataset D, BC optimizes the following empirical risk.
1 H
Eemp (7]1\',7'('*) = E ZESthtD []Ea“?l'\t,("st,) [H (a * 7T: (St))]] s
t=1

where fh(s) = W
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Behavioral Cloning

» BC does not need to interact with the MDP and optimizes the empirical risk in an offline

manner.

> Given expert dataset D, we define Ilyimic(D) as the set of policies which are compatible
with D.
HmimiC(D)é{WGH:Vte[ 1,5 €Si(D), m(- | s) = (S)}

where S;(D) = {si}™, and §, is a distribution over A which puts all probability mass on a.

* It is easy to check that V7 € Ilyimic(D), Lemp (7, 7*) = 0, meaning that the solution of
BC lies in I pimic(D).
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Upper Bound of BC

Consider any policy 7 € Hyimic (D),

> The expected sub-optimality is bounded by,

J (") ~E[J(®)] 5 min{H, 'ijz}

» For any 6 € (0, min{1, H/10}], w.p. > 1 -4, the sub-optimality is bounded by,

() a(m) < IS | VISIH? log(H[5)

m
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Upper bound of BC

» BC enjoys a convergence rate of % which is rare in decision-making tasks.

> The sub-optimality of BC grows quadratically w.r.t the horizon, which is referred to the

phenomenon of compounding error.
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An lllusrating Example

> Consider the three-state MDP. There are two actions A = {B, R}. dy = (17,1 - -15,0).

» The expert policy 7/ (s) = B,VseS,Vte[H] and J(7*) = H.

» The expert dataset D = {(s¢,a!)Z,}™ where 5! Fht g, Vte [H].
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An lllusrating Example

> For each step t € [H], with a constant probability ((1- —15)™ >¢e™'), s; is not covered in

S¢(D). The learner 7 does not know how to act when visiting s; at step t.

» For 7, at step t, if & does not make any mistakes before (or it has been transited into s3),

W.p. 2 -, Tt encounters s, makes a mistake and suffers a sub-optimality of H —¢.

» The total sub-optimality > ¥ (1 - L)L (H-t) 2 H
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Proof Idea

> We first bridge the connection between sub-optimality and the population 0 -1 risk.

» For each 7 € Ilnimic, We upper bound the population risk Lo, (7, 7*) with a missing mass

argument.

Tian Xu (Nanjing University) The Fundamental Limits of Imitation Learning March 26, 2021 18 / 47



Analysis

For all policy &, we have
J(n*) = J(7) € H? Lpop(7,7%),

where Loop (#,7*) = 7 £ily B,pt, [Bavmyis) L # 77 (50))]]
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> We first upper bound the sub-optimality with the total variation between two occupancy

measures.

J(r*) = J(7) <2 i Dyv(PT PP,

i=1
where P (s,a) = Pry (st = s,a: = a).
» Then we derive a recursion formula of Dpy (P, Pf).
Drv (P PF)  <Eq .t [Eomgon [Lla#m (s0)]]+ Drv(PLy, PLy)

| — | Sy —
Accumulated error to step t Accumulated error to step t—1

(1)

Error at step t

» Expanding the above formula yields the desired result.
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Analysis

For each 7t € Wnimic (D), where I imic (D) is the set of policies which are compatible with D.

» The expected 0-1 population risk of w has an upper bound.

48]
E[Lpop(F,m)] < =—.
[Loup( 7)) < 3
» Ve (0,min {1, H/10}), w.p. 1 -4, we have

P 45| . 3/|S|log(H /&)
SomTT  m

Lropli") -
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» For each 7 € I pimic(D), Lpop (7, 77*) = % Z£1 ]ESth;* [Eaﬁt(.pt) [T(a+m} (st))]] <
7 2t Bappr, [I(se # Si(D))] = 7 Tily Saes foe ()50 £ S4(D)).

> For step t, we take expectation w.r.t. D and obtain that

E| Y fL(s)I(se ¢ Se(D))| =D fha(s)Pr(se ¢ Se(D)) = Y. fra(s)(1-fLe(s))™ ( ) Zgj

seS seS seS

where inequality (1) follows that max,.o 1 2(1 - )™ < 9%-

» The term E[Zses Fho(s)I(se ¢ St(D))] is called "missing mass” which is the probability
mass contributed by the items uncovered in dataset.
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Missing mass

Definition 3 (Missing mass)

Let P be the probability distribution over X. Suppose that X are i.i.d. drawn from P. Let
ne(X™) = ¥ I(X* = 2) denote the number of times that the symbol z is observed in X™.
Then the missing mass mo(p, X™) = Y pex P(2)I (0, (X™) = 0) which is defined as the

probability mass contributed by symbols are uncovered in X™.
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Missing mass

Consider an arbitrary distribution P on X, and let X™ “%% P be a dataset of m samples drawn
Then, w.p. 1-6,

i.i.d. from P. Consider any é € (0, 1.

o (3, X™) —  [m (v, X™)] < 3\/_10g(1/(5)
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» We have obtained the upper bound of the expected missing mass.

[z FL ()i ¢ stw))] 5|

seS

» With the concentration argument for missing mass, we obtain the high probability bound.
For any 6 € (0, =], w.p. >1-9,

> fo (s)ﬂ<st¢st(p)<4|5| 3V/[STlog(H/5)

seS m
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Outline

Lower bound
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Lower bound

Theorem 5

Under the no-interaction setting, for any learner 7, there exists an MDP M and a deterministic
expert policy m* such that the expected sub-optimality of the learner is lower bounded by,

I (1) ~E [ I (7)] 2 win { H, [S|H? /m}

Furthermore this lower bound applies even when the learner operates in the active setting.
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» The upper bound of BC meets the lower bound which implies that BC is already minimax

optimal under the no-interaction setting in IL.

> This lower bound also holds in the active setting which suggests that the ability to actively
query the expert does not reduce the hardness of problems.
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The hard MDPs
~p ~p
%

» There are |S| states and |.A| actions. At each state, there is an optimal action (the green

arrow). The state b is a bad and absorbing state.

> The initial state distribution p:( R I e 0).

m+1? ) m+1? m+1"7

> At each state except b, when the agent takes the optimal action, it will be renewed
according p and get +1 reward. Otherwise, it will be transited to b and can not get

rewards anymore.
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*» For any learner 7, our target is to lower bound maxg .+ Ju(7*) = E[Jm(7(D))].

> |t suffices to lower bound the Bayes expected sub-optimality
Ers pyep [Im(7*) = E[Jaa(7(D))]], where P is a joint distribution over MDPs and
expert policies.

» The construction of P: 7* ~ Unif (Ilge) and M = M[7n*] is determined by the MDP
template constructed above.
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The correlation between (7*, M[7*]) and D.

v

v

Conditioned on (7%, M[7n*]), D is obtained by rolling out 7* on M[7*].

» Conversely, conditioned on D, (7%, M[7*]) ~ P(D) where 7* ~ Unif (ILyimic(D)) and
M= M[r*].

v

Then we have

E (e my~p [H = E[Jpm(F(D))]] = E[E(rr p)-p(py [H = I (F(D))]]
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Auxiliary Lemma

Define the stopping time T as the first time t that the learner encounters a state s; ¢ S;(D)
that has not been visited in D at time t. That is,

| inf{t:s; ¢ Se(D)u{b}} 3It:si¢S(D)u{b}
1 H otherwise

Then conditioned on the dataset D, we have

B w020y 7 () ~ELIRONN 2 (1= ) Eooreymeoy [Brcon - 71)

When # encounters an uncovered state at 7, with probability > (1 - ﬁ) 7 takes an

non-optimal action and suffers a sub-optimality of H — 7.
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We apply the above useful lemma and obtain that

Ere pyp [ (77) = E[J(F(D))]] 2 (1 - |;|)]E [Eer ay~p0y [Ezoy [H - 71]],

? (1 ) Iill) %E [ ryp ) [Pracoy [ < LH/2]]]]

= (1 - |il|) gE(w*,M%P [E [Pracoy [ < [H/21]],

where inequality (1) follows the Markov's inequality.
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Auxiliary Lemma

For any learner «,

sl-2 \M7 o siH
E (e my~p [E[Pracpy [T < [H/2]]]] 21 - (1 - eiJ\|f+1)) 2 mln{l, |]|V}
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Missing Proof
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Proof of Lemma

Define the stopping time 7 as the first time t that the learner encounters a state s; ¢ S;(D)
that has not been visited in D at time t. That is,

| inf{t:s; ¢ Se(D)u{b}} 3It:s;¢S(D)u{b}
| H otherwise

Then conditioned on the dataset D, we have

B w020y [ () ~ELIRONN 2 (1= ) Eooraymeoy [Brcon - 71)

b
Al
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Proof of Lemma

» We define an useful random variable 75, to be the first time the learner first encounters the

state b.
inf{t:s,=b} Ft:s,=0
T =
b H+1 otherwise

> We have H — E(ﬂ*’M)NP(D)[J(’Tf)] = E(ﬂ'*,M)~’P(D) [E;F [H - Ty + 1]]

» For each t € [H], we consider the probability Prz (1, =t +1).

PI'T}(T(,=t+1)2Prﬁ—(Tb=t+17’T=t)= ZPrﬁ—(TbZt+l,T=t7St=S)

seS
=Y Pra(n=t+1r=t,8,=5)Pra (1 =t,5 =)
seS
=2 (1=7 (n{(s) | 5)) Pra (7 =t,5, = 5)
seS
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Proof of Lemma

» Taking expectation yields that

B ayep oy [(1 =T (77 (5) | 5)) Pra (7 = t,5; = 5)]

1 — *
O E e atyp(0) (1= (17 () | )] Equeayp o) [Prs (7 = 51 = 9)]
@) 1
= (1- W)E(w*,/\/l%P(D) [Prz (7 =t,8:=5)],
Equation (1) holds since #},---,m;_; and 7} are independent. Equation (2) follows that at

states uncovered in D, the expert action is uniformly drawn from the action space.
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Proof of Lemma

» Taking summation over s yields
E(re pmy-p(py [Pra (1 =t +1)] 2 (1= 7)) E (e at)vp(p) [Pra (7= 1)].

> For the sub-optimality, we have

H ~Eex pyep(0) [ (T)] = E(rr pmy-p(0y [Ex [H — 7 +1]]

1
>(1- W)E(ww\/z)m(p) [E=[H-7]]
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Proof of Lemma

For any learner «,

sl-2 \M7 o siH
E (e my~p [E[Pracpy [T < [H/2]]]] 21 - (1 - eiJ\|f+1)) 2 mln{l, |]|V}
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Proof of Lemma

» For each t € [H], we consider Prz(p)[T = t].

Prapy[7 =t] = Prap) [s¢ ¢ Sy (D) u {b}, V1’ < t,51 € Sp(D) u {b}]
= Prz(py [s¢ ¢ S (D) u {b}, Vt' <t, 51 € Sy (D)\{b}]
= PI'ﬂ-* [St ¢ St(D) U {b}, Vt, < t, Sy € St/(D)\{b}]

t-1
= (1-p(S:(D)\{0})) tljl p(Se(D)\{0})

> Pracpylr < [H/2)] = 1 - T p (S{(D)\ (b))
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Proof of Lemma

> We take expectation w.r.t the expert dataset.

LH/2] LH/2
El l:[ p(St(D)\{b})] 1l E[p (Se(D)\{b})]
H/2]
tU1 Z (s)Pr(s e S¢(D)\{b})
[H/2]
! . o(s) (1= (1-p(s)™)
= 1=y

where v =Y. p(s)(1 - p(s))™ is the missing mass.
> E[Pracpy[r < [H/2]]] = 1- (1 -T2
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Proof of Lemma

» Then we lower bound the missing mass.

v=2p(s)(A-p(s)™ 2

Py m+1

|S|—2(1_ 1 ) W _|8|-2

m+1 T e(m+1)

where inequality (1) follows that (1+-1)™ <e.

NGNS
> Epe aiyop [E [Pra[r < [H/2]]]] = 1-(1-y)1H72] » 1-(1- e'(‘jv‘j)) > mm{l,%},

where inequality (2) follows that (1+ %)™ <exp(x) <1+ £ when z € (-1,0).
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Thank you!

Feel free to contact me for more discussions!

xut@lamda.nju.edu.cn
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