
The Fundamental Limits of Imitation Learning

Tian Xu
xut@lamda.nju.edu.cn

Nanjing University

Mainly based on:

Toward the Fundamental Limits of Imitation Learning.

March 26, 2021

Tian Xu (Nanjing University) The Fundamental Limits of Imitation Learning March 26, 2021 1 / 47



Outline

Background

Behavioral Cloning

Lower bound

Missing Proof

Tian Xu (Nanjing University) The Fundamental Limits of Imitation Learning March 26, 2021 2 / 47



Reinforcement Learning (RL)
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RL Challenges
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Figure 3: The top and middle rows show value estimates by DQN (orange) and Double DQN (blue) on six Atari games. The
results are obtained by running DQN and Double DQN with 6 different random seeds with the hyper-parameters employed by
Mnih et al. (2015). The darker line shows the median over seeds and we average the two extreme values to obtain the shaded
area (i.e., 10% and 90% quantiles with linear interpolation). The straight horizontal orange (for DQN) and blue (for Double
DQN) lines in the top row are computed by running the corresponding agents after learning concluded, and averaging the actual
discounted return obtained from each visited state. These straight lines would match the learning curves at the right side of the
plots if there is no bias. The middle row shows the value estimates (in log scale) for two games in which DQN’s overoptimism
is quite extreme. The bottom row shows the detrimental effect of this on the score achieved by the agent as it is evaluated
during training: the scores drop when the overestimations begin. Learning with Double DQN is much more stable.

The ground truth averaged values are obtained by running
the best learned policies for several episodes and computing
the actual cumulative rewards. Without overestimations we
would expect these quantities to match up (i.e., the curve to
match the straight line at the right of each plot). Instead, the
learning curves of DQN consistently end up much higher
than the true values. The learning curves for Double DQN,
shown in blue, are much closer to the blue straight line rep-
resenting the true value of the final policy. Note that the blue
straight line is often higher than the orange straight line. This
indicates that Double DQN does not just produce more ac-
curate value estimates but also better policies.

More extreme overestimations are shown in the middle
two plots, where DQN is highly unstable on the games As-
terix and Wizard of Wor. Notice the log scale for the values
on the y-axis. The bottom two plots shows the correspond-
ing scores for these two games. Notice that the increases in
value estimates for DQN in the middle plots coincide with
decreasing scores in bottom plots. Again, this indicates that
the overestimations are harming the quality of the resulting
policies. If seen in isolation, one might perhaps be tempted
to think the observed instability is related to inherent in-
stability problems of off-policy learning with function ap-
proximation (Baird 1995, Tsitsiklis and Van Roy 1997, Maei

no ops human starts
DQN DDQN DQN DDQN DDQN

(tuned)
Median 93% 115% 47% 88% 117%
Mean 241% 330% 122% 273% 475%

Table 1: Summarized normalized performance on 49 games
for up to 5 minutes with up to 30 no ops at the start of each
episode, and for up to 30 minutes with randomly selected
human start points. Results for DQN are from Mnih et al.
(2015) (no ops) and Nair et al. (2015) (human starts).

2011, Sutton et al. 2015). However, we see that learning is
much more stable with Double DQN, suggesting that the
cause for these instabilities is in fact Q-learning’s overopti-
mism. Figure 3 only shows a few examples, but overestima-
tions were observed for DQN in all 49 tested Atari games,
albeit in varying amounts.

Quality of the learned policies
Overoptimism does not always adversely affect the quality
of the learned policy. For example, DQN achieves optimal

2098

Double DQN requires million samples to solve Atari
games [van Hasselt et al., 2016].

Robot directly learns from human demonstrations.

▸ RL aims to learn the (near-) optimal decisions from interactions with environments

● It often requires a large amount of samples.

● It’s hard to design proper reward function for each particular task.

▸ In some real-world scenarios, it is easy to obtain expert-level demonstrations.
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Imitation Learning (IL)

⇡(a|s)
<latexit sha1_base64="qBV+Za0JbUuQwUylFLhcnFQI/p4="></latexit>

(s, a) ⇠ ⇡E
<latexit sha1_base64="jz+ybFblCcdOOp+3MEW0em98KOs="></latexit>

Learner Expert

▸ Given trajectories D = {(si1, ai1, si2,⋯, siH , aiH)}mi=1 collected by expert policy πE, which is

(near-) optimal.

▸ Agent directly learns a policy from D without explicit rewards.

▸ IL does not rely on trails-and-errors and could be more sample-efficient .
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Markov Decision Process

▸ Consider a finite episodic Markov Decision Process (S,A,H,{Ph}h∈[H] ,{rh}h∈[H] , ρ).

● S and A are the state and action space, respectively.

● rh(s, a) ∈ [0,1] is deterministic reward received after taking the action a in state s at step h.

● Ph(s
′
∣s, a) specifies the transition probability of s′ conditioned on s and a at step h.

● H is the horizon length.

● The initial state s1 is sampled from the initial state distribution ρ.
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Markov Decision Process

▸ A deterministic policy is a collection of functions πh ∶ S → A for all h ∈ [H]. We use Πdet

to denote the set of all deterministic policies.

▸ We assume that the expert policy is deterministic and optimal.

▸ The policy value J(π) = E [∑Hh=1 rh(sh, ah)].

Tian Xu (Nanjing University) The Fundamental Limits of Imitation Learning March 26, 2021 7 / 47



Settings

▸ There are mainly three settings in IL.

● No-interaction: Provided with expert dataset, the learner is not allowed to interact with the

MDP.

● Known-transition: Besides expert dataset, the learner additionally knowns the MDP

transition function.

● Active: Without expert dataset in advance, the learner is allowed to interact with the MDP

for m episodes and is provided access to an oracle which outputs the expert action π∗(s) at

the learner’s current state s.

▸ Intuitively, the hardness of problems under different settings: No-interaction ≥
Known-transition, No-interaction ≥ (≍) Active.
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Overview

▸ In IL, our objective is to minimize the policy value gap:

min
π

J(πE) − J(π) ⇐⇒ max
π

J(π)

▸ There are mainly two classes of methods: behavioral cloning (BC) [Pomerleau, 1991] and

adversarial-based imitation [Abbeel and Ng, 2004, Ho and Ermon, 2016].

● BC: mimic by action distribution matching with supervised learning.

● Adversarial-based imitation: firstly infer the reward function, then learn a (sub-) optimal

policy with the recovered reward.
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Behavioral Cloning (BC)

(s0, a0)
(s1, a1)
(s2, a2)⋯

s
<latexit sha1_base64="MPoN5FQNIwqsvYx0RJ66cFTPvmQ="></latexit>

a
<latexit sha1_base64="GRf28WiBy1mmZte9TetlOdRZo1o="></latexit>

▸ Given expert demonstrations: D = {(si1, ai1, si2,⋯, siH , aiH)}mi=1.

▸ BC reduces IL to supervised learning:

● BC firstly splits trajectories into labeled data with states as inputs and actions as targets.

● Then BC learns a mapping (e.g., neural networks) from state space to action space via any

supervised learning methods.
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Behavioral Cloning

▸ Mathematically, BC learns a policy to minimize the population 0 − 1 risk.

Lpop (π̂, π∗) =
1

H

H

∑
t=1

Est∼ftπ∗ [Ea∼π̂t(⋅∣st) [I (a ≠ π
∗
t (st))]] ,

where f tπ∗(s) = Prπ∗(st = s).

▸ With expert dataset D, BC optimizes the following empirical risk.

Lemp (π̂, π∗) =
1

H

H

∑
t=1

Est∼ftD [Ea∼π̂t(⋅∣st) [I (a ≠ π∗t (st))]] ,

where f tD(s) = ∑
m
i=1 I(sit=s)

m
.
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Behavioral Cloning

▸ BC does not need to interact with the MDP and optimizes the empirical risk in an offline

manner.

▸ Given expert dataset D, we define Πmimic(D) as the set of policies which are compatible

with D.

Πmimic(D) ≜ {π ∈ Π ∶ ∀t ∈ [H], s ∈ St(D), πt(⋅ ∣ s) = δπ∗t (s)} ,

where St(D) = {sit}mi=1 and δa is a distribution over A which puts all probability mass on a.

▸ It is easy to check that ∀π̂ ∈ Πmimic(D), Lemp (π,π∗) = 0, meaning that the solution of

BC lies in Πmimic(D).
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Upper Bound of BC

Theorem 1

Consider any policy π̂ ∈ Πmimic(D),

▸ The expected sub-optimality is bounded by,

J (π∗) −E[J(π̂)] ≲ min{H, ∣S ∣H
2

m
}

▸ For any δ ∈ (0,min{1,H/10}], w.p. ≥ 1 − δ, the sub-optimality is bounded by,

J (π∗) − J(π̂) ≲ ∣S ∣H2

m
+

√
∣S ∣H2 log(H/δ)

m
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Upper bound of BC

▸ BC enjoys a convergence rate of 1
m

, which is rare in decision-making tasks.

▸ The sub-optimality of BC grows quadratically w.r.t the horizon, which is referred to the

phenomenon of compounding error.
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An Illusrating Example

 

MAB pointerfree
低阶⾼阶

do do

òòo

▸ Consider the three-state MDP. There are two actions A = {B,R}. d0 = ( 1
m+1 ,1 −

1
m+1 ,0).

▸ The expert policy π∗t (s) = B,∀s ∈ S,∀t ∈ [H] and J(π∗) =H.

▸ The expert dataset D = {(sit, ait)Ht=1}mi=1 where sit
i.i.d.∼ d0, ∀t ∈ [H].
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An Illusrating Example

 

MAB pointerfree
低阶⾼阶

do do

òòo

▸ For each step t ∈ [H], with a constant probability ((1 − 1
m+1)

m ≥ e−1), s1 is not covered in

St(D). The learner π̂ does not know how to act when visiting s1 at step t.

▸ For π̂, at step t, if π̂ does not make any mistakes before (or it has been transited into s3),

w.p. ≳ 1
m+1 , π̂ encounters s1, makes a mistake and suffers a sub-optimality of H − t.

▸ The total sub-optimality ≳ ∑Ht=1(1 − 1
m+1)

t−1 1
m+1(H − t) ≳ H2

m
.
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Proof Idea

▸ We first bridge the connection between sub-optimality and the population 0 − 1 risk.

▸ For each π̂ ∈ Πmimic, we upper bound the population risk Lpop(π̂, π∗) with a missing mass

argument.
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Analysis

Lemma 1 ([Ross et al., 2011])

For all policy π̂, we have

J(π∗) − J(π̂) ≤H2Lpop(π̂, π∗),

where Lpop(π̂, π∗) = 1
H ∑

H
t=1Est∼ftπ∗ [Ea∼π̂t(⋅∣st) [I (a ≠ π

∗
t (st))]]
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Proof

▸ We first upper bound the sub-optimality with the total variation between two occupancy

measures.

J(π∗) − J(π̂) ≤ 2
H

∑
t=1
DTV(Pπ

∗

t , P π̂t ),

where Pπt (s, a) = Prπ(st = s, at = a).

▸ Then we derive a recursion formula of DTV(Pπ∗t , P π̂t ).

DTV(Pπ
∗

t , P π̂t )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Accumulated error to step t

≤ Est∼ftπ∗ [Ea∼π̂t(⋅∣st) [I (a ≠ π
∗
t (st))]]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Error at step t

+ DTV(Pπ
∗

t−1, P
π̂
t−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Accumulated error to step t−1

.

(1)

▸ Expanding the above formula yields the desired result.
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Analysis

Lemma 2

For each π̂ ∈ Πmimic(D), where Πmimic(D) is the set of policies which are compatible with D.

▸ The expected 0-1 population risk of π̂ has an upper bound.

E [Lpop(π̂, π∗)] ≤
4

9

∣S ∣
m
.

▸ ∀δ ∈ (0,min{1,H/10}), w.p. 1 − δ, we have

Lpop(π̂, π∗) ≤
4∣S ∣
9m

+
3
√

∣S ∣ log(H/δ)
m

.
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Proof

▸ For each π̂ ∈ Πmimic(D), Lpop(π̂, π∗) = 1
H ∑

H
t=1Est∼ftπ∗ [Ea∼π̂t(⋅∣st) [I (a ≠ π

∗
t (st))]] ≤

1
H ∑

H
t=1Est∼ftπ∗ [I(st /∈ St(D))] = 1

H ∑
H
t=1∑s∈S f tπ∗(s)I(st /∈ St(D)).

▸ For step t, we take expectation w.r.t. D and obtain that

E [∑
s∈S

f tπ∗(s)I(st /∈ St(D))] = ∑
s∈S

f tπ∗(s)Pr(st /∈ St(D)) = ∑
s∈S

f tπ∗(s)(1−f tπ∗(s))m
(1)
≤ 4∣S ∣

9m
,

where inequality (1) follows that maxx∈[0,1] x(1 − x)m ≤ 4
9m

.

▸ The term E [∑s∈S f tπ∗(s)I(st /∈ St(D))] is called “missing mass” which is the probability

mass contributed by the items uncovered in dataset.
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Missing mass

Definition 3 (Missing mass)

Let P be the probability distribution over X . Suppose that Xm are i.i.d. drawn from P . Let

nx(Xm) = ∑mi=1 I(Xi = x) denote the number of times that the symbol x is observed in Xm.

Then the missing mass m0(p,Xm) = ∑x∈X p(x)I (nx(Xm) = 0) which is defined as the

probability mass contributed by symbols are uncovered in Xm.
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Missing mass

Theorem 4 ([McAllester and Ortiz, 2003])

Consider an arbitrary distribution P on X, and let Xm i.i.d.∼ P be a dataset of m samples drawn

i.i.d. from P . Consider any δ ∈ (0, 1
10

]. Then, w.p. 1 − δ,

m0 (ν,Xm) −E [m0 (ν,Xm)] ≤
3
√

∣X ∣ log(1/δ)
m

.
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Proof

▸ We have obtained the upper bound of the expected missing mass.

E [∑
s∈S

f tπ∗(s)I(st /∈ St(D))] ≤ 4∣S ∣
9m

.

▸ With the concentration argument for missing mass, we obtain the high probability bound.

For any δ ∈ (0, 1
1o

], w.p. ≥ 1 − δ,

∑
s∈S

f tπ∗(s)I(st /∈ St(D) ≤ 4∣S ∣
9m

+
3
√

∣S ∣ log(H/δ)
m

.
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Lower bound

Theorem 5

Under the no-interaction setting, for any learner π̂, there exists an MDP M and a deterministic

expert policy π∗ such that the expected sub-optimality of the learner is lower bounded by,

JM (π∗) −E [JM(π̂)] ≳ min{H, ∣S ∣H2/m}

Furthermore this lower bound applies even when the learner operates in the active setting.
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Lower bound

▸ The upper bound of BC meets the lower bound which implies that BC is already minimax

optimal under the no-interaction setting in IL.

▸ This lower bound also holds in the active setting which suggests that the ability to actively

query the expert does not reduce the hardness of problems.
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The hard MDPs

1

∼ρ

· · · |S|−1

∼ρ

b

(a) MDP template when in the no-interaction setting,
Upon playing the expert’s action at any state ex-
cept b, learner is renewed in the initial distribu-
tion,
ρ = {ζ, · · ·, ζ, 1−(|S|−2)ζ, 0} where ζ= 1

N+1

1 · · · |S|

(b) MDP template in the known-transition setting,
Each state is absorbing, initial distribution is given
by {ζ, · · ·, ζ, 1 − (|S|−1)ζ} where ζ = 1

N+1

Figure 1: MDP templates for lower bounds under different settings: green arrows indicate state
transitions under the expert’s action, red arrows indicate state transitions under other actions
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▸ There are ∣S ∣ states and ∣A∣ actions. At each state, there is an optimal action (the green

arrow). The state b is a bad and absorbing state.

▸ The initial state distribution ρ = ( 1
m+1 ,⋯,

1
m+1 ,1 −

∣S∣−2
m+1 ,0).

▸ At each state except b, when the agent takes the optimal action, it will be renewed

according ρ and get +1 reward. Otherwise, it will be transited to b and can not get

rewards anymore.
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Proof

▸ For any learner π̂, our target is to lower bound maxM,π∗ JM(π∗) −E [JM(π̂(D))].

▸ It suffices to lower bound the Bayes expected sub-optimality

E(π∗,M)∼P [JM(π∗) −E [JM(π̂(D))]], where P is a joint distribution over MDPs and

expert policies.

▸ The construction of P: π∗ ∼ Unif (Πdet) and M =M[π∗] is determined by the MDP

template constructed above.
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Proof

▸ The correlation between (π∗,M[π∗]) and D.

▸ Conditioned on (π∗,M[π∗]), D is obtained by rolling out π∗ on M[π∗].

▸ Conversely, conditioned on D, (π∗,M[π∗]) ∼ P(D) where π∗ ∼ Unif (Πmimic(D)) and

M =M[π∗].

▸ Then we have

E(π∗,M)∼P [H −E [JM(π̂(D))]] = E [E(π∗,M)∼P(D) [H − JM(π̂(D))]]
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Auxiliary Lemma

Lemma 6

Define the stopping time τ as the first time t that the learner encounters a state st /∈ St(D)
that has not been visited in D at time t. That is,

τ =
⎧⎪⎪⎨⎪⎪⎩

inf {t ∶ st ∉ St(D) ∪ {b}} ∃t ∶ st ∉ St(D) ∪ {b}
H otherwise

Then conditioned on the dataset D, we have

E(π∗,M)∼P(D) [J (π∗) −E[J(π̂(D))]] ≥ (1 − 1

∣A∣ )E(π∗,M)∼P(D) [Eπ̂(D)[H − τ]] .

When π̂ encounters an uncovered state at τ , with probability ≥ (1 − 1
∣A∣), π̂ takes an

non-optimal action and suffers a sub-optimality of H − τ .
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Proof

We apply the above useful lemma and obtain that

E(π∗,M)∼P [J (π∗) −E[J(π̂(D))]] ≥ (1 − 1

∣A∣ )E
[E(π∗,M)∼P(D) [Eπ̂(D)[H − τ]]] ,

(1)
≥ (1 − 1

∣A∣ )
H

2
E [E(π∗,M)∼P(D) [Prπ̂(D)[τ ≤ ⌊H/2⌋]]]

= (1 − 1

∣A∣ )
H

2
E(π∗,M)∼P [E [Prπ̂(D)[τ ≤ ⌊H/2⌋]]] ,

where inequality (1) follows the Markov’s inequality.
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Auxiliary Lemma

Lemma 7

For any learner π̂,

E(π∗,M)∼P [E [Prπ̂(D)[τ ≤ ⌊H/2⌋]]] ≥ 1 − (1 − ∣S ∣ − 2

e(N + 1))
⌊H/2⌋

≳ min{1,
∣S ∣H
N

}
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Proof of Lemma 8

Lemma 8

Define the stopping time τ as the first time t that the learner encounters a state st /∈ St(D)
that has not been visited in D at time t. That is,

τ =
⎧⎪⎪⎨⎪⎪⎩

inf {t ∶ st ∉ St(D) ∪ {b}} ∃t ∶ st ∉ St(D) ∪ {b}
H otherwise

Then conditioned on the dataset D, we have

E(π∗,M)∼P(D) [J (π∗) −E[J(π̂(D))]] ≥ (1 − 1

∣A∣ )E(π∗,M)∼P(D) [Eπ̂(D)[H − τ]] .
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Proof of Lemma 8

▸ We define an useful random variable τb to be the first time the learner first encounters the

state b.

τb =
⎧⎪⎪⎨⎪⎪⎩

inf {t ∶ st = b} ∃t ∶ st = b
H + 1 otherwise

▸ We have H −E(π∗,M)∼P(D)[J(π̂)] = E(π∗,M)∼P(D) [Eπ̂ [H − τb + 1]].

▸ For each t ∈ [H], we consider the probability Prπ̂ (τb = t + 1).

Prπ̂ (τb = t + 1) ≥ Prπ̂ (τb = t + 1, τ = t) = ∑
s∈S

Prπ̂ (τb = t + 1, τ = t, st = s)

= ∑
s∈S

Prπ̂ (τb = t + 1∣τ = t, st = s)Prπ̂ (τ = t, st = s)

= ∑
s∈S

(1 − π̂t (π∗t (s) ∣ s))Prπ̂ (τ = t, st = s)
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Proof of Lemma 8

▸ Taking expectation yields that

E(π∗,M)∼P(D) [(1 − π̂t (π∗t (s) ∣ s))Prπ̂ (τ = t, st = s)]
(1)= E(π∗,M)∼P(D) [(1 − π̂t (π∗t (s) ∣ s))]E(π∗,M)∼P(D) [Prπ̂ (τ = t, st = s)]
(2)= (1 − 1

∣A∣ )E(π∗,M)∼P(D) [Prπ̂ (τ = t, st = s)] ,

Equation (1) holds since π∗1 ,⋯, π∗t−1 and π∗t are independent. Equation (2) follows that at

states uncovered in D, the expert action is uniformly drawn from the action space.
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Proof of Lemma 8

▸ Taking summation over s yields

E(π∗,M)∼P(D) [Prπ̂ (τb = t + 1)] ≥ (1 − 1
∣A∣)E(π∗,M)∼P(D) [Prπ̂ (τ = t)].

▸ For the sub-optimality, we have

H −E(π∗,M)∼P(D)[J(π̂)] = E(π∗,M)∼P(D) [Eπ̂ [H − τb + 1]]

≥ (1 − 1

∣A∣ )E(π∗,M)∼P(D) [Eπ̂ [H − τ]]
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Proof of Lemma 9

Lemma 9

For any learner π̂,

E(π∗,M)∼P [E [Prπ̂(D)[τ ≤ ⌊H/2⌋]]] ≥ 1 − (1 − ∣S ∣ − 2

e(N + 1))
⌊H/2⌋

≳ min{1,
∣S ∣H
N

}
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Proof of Lemma 9

▸ For each t ∈ [H], we consider Prπ̂(D)[τ = t].

Prπ̂(D)[τ = t] = Prπ̂(D) [st ∉ St(D) ∪ {b},∀t′ < t, st′ ∈ St′(D) ∪ {b}]
= Prπ̂(D) [st ∉ St(D) ∪ {b},∀t′ < t, st′ ∈ St′(D)/{b}]
= Prπ∗ [st ∉ St(D) ∪ {b},∀t′ < t, st′ ∈ St′(D)/{b}]

= (1 − ρ (St(D)/{b}))
t−1
∏
t′=1

ρ (St′(D)/{b})

▸ Prπ̂(D)[τ ≤ ⌊H/2⌋] = 1 −∏⌊H/2⌋
t=1 ρ (St(D)/{b}).
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Proof of Lemma 9

▸ We take expectation w.r.t the expert dataset.

E
⎡⎢⎢⎢⎢⎣

⌊H/2⌋

∏
t=1

ρ (St(D)/{b})
⎤⎥⎥⎥⎥⎦
=

⌊H/2⌋

∏
t=1

E [ρ (St(D)/{b})]

=
⌊H/2⌋

∏
t=1
∑
s

ρ(s)Pr(s ∈ St(D)/{b})

=
⌊H/2⌋

∏
t=1
∑
s

ρ(s)(1 − (1 − ρ(s))m)

= (1 − γ)⌊H/2⌋,

where γ = ∑s ρ(s)(1 − ρ(s))m is the missing mass.

▸ E [Prπ̂(D)[τ ≤ ⌊H/2⌋]] = 1 − (1 − γ)⌊H/2⌋.
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Proof of Lemma 9

▸ Then we lower bound the missing mass.

γ = ∑
s∈S

ρ(s)(1 − ρ(s))m ≥ ∣S ∣ − 2

m + 1
(1 − 1

m + 1
)
m (1)

≥ ∣S ∣ − 2

e(m + 1) .

where inequality (1) follows that (1 + 1
m
)m ≤ e.

▸ E(π∗,M)∼P [E [Prπ̂[τ ≤ ⌊H/2⌋]]] = 1−(1−γ)⌊H/2⌋ ≥ 1−(1 − ∣S∣−2
e(N+1))

⌊H/2⌋ (2)
≳ min{1, ∣S∣H

N
},

where inequality (2) follows that (1 + x
N
)N ≤ exp(x) ≤ 1 + x

2
when x ∈ (−1,0).
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Thank you!

Feel free to contact me for more discussions!

xut@lamda.nju.edu.cn
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