The Fundamental Limits of Imitation Learning

Tian Xu

xut@lamda.nju.edu.cn

Nanjing University

Mainly based on: Toward the Fundamental Limits of Imitation Learning.

March 26, 2021

< □ > < 円

< ∃ >

Background

Behavioral Cloning

Lower bound

Missing Proof

Tian Xu (Nanjing University)

Reinforcement Learning (RL)

Tian Xu (Nanjing University)

The Fundamental Limits of Imitation Learning

RL Challenges

Double DQN requires million samples to solve Atari games [van Hasselt et al., 2016].

Robot directly learns from human demonstrations.

4 A 1

- ▶ RL aims to learn the (near-) optimal decisions from interactions with environments
 - It often requires a large amount of samples.
 - It's hard to design proper reward function for each particular task.
- ▶ In some real-world scenarios, it is easy to obtain expert-level demonstrations.

Imitation Learning (IL)

- Given trajectories $D = \{(s_1^i, a_1^i, s_2^i, \dots, s_H^i, a_H^i)\}_{i=1}^m$ collected by expert policy π_E , which is (near-) optimal.
- ▶ Agent directly learns a policy from *D* without explicit rewards.
- ▶ IL does not rely on trails-and-errors and could be more sample-efficient .

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Consider a finite episodic Markov Decision Process $(S, A, H, \{P_h\}_{h \in [H]}, \{r_h\}_{h \in [H]}, \rho)$.
 - ${\mathcal S}$ and ${\mathcal A}$ are the state and action space, respectively.
 - $r_h(s,a) \in [0,1]$ is deterministic reward received after taking the action a in state s at step h.
 - $P_h(s'|s, a)$ specifies the transition probability of s' conditioned on s and a at step h.
 - *H* is the horizon length.
 - The initial state s_1 is sampled from the initial state distribution ρ .

(a) < (a) < (b) < (b)

- A deterministic policy is a collection of functions π_h : S → A for all h ∈ [H]. We use Π_{det} to denote the set of all deterministic policies.
- We assume that the expert policy is deterministic and optimal.

• The policy value
$$J(\pi) = \mathbb{E}\left[\sum_{h=1}^{H} r_h(s_h, a_h)\right]$$
.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- There are mainly three settings in IL.
 - No-interaction: Provided with expert dataset, the learner is not allowed to interact with the MDP.
 - Known-transition: Besides expert dataset, the learner additionally knowns <u>the MDP</u> transition function.
 - Active: Without expert dataset in advance, the learner is allowed to interact with the MDP for m episodes and is provided access to an oracle which outputs the expert action $\pi^*(s)$ at the learner's current state s.
- Intuitively, the hardness of problems under different settings: No-interaction ≥ Known-transition, No-interaction ≥ (≍) Active.

< ロ > < 同 > < 三 > < 三 >

In IL, our objective is to minimize the policy value gap:

$$\min_{\pi} J(\pi_E) - J(\pi) \iff \max_{\pi} J(\pi)$$

- There are mainly two classes of methods: behavioral cloning (BC) [Pomerleau, 1991] and adversarial-based imitation [Abbeel and Ng, 2004, Ho and Ermon, 2016].
 - BC: mimic by action distribution matching with supervised learning.
 - Adversarial-based imitation: firstly infer the reward function, then learn a (sub-) optimal policy with the recovered reward.

< ロ > < 同 > < 三 > < 三 >

Background

Behavioral Cloning

Lower bound

Missing Proof

Tian Xu (Nanjing University)

The Fundamental Limits of Imitation Learning

March 26, 2021 10 / 47

э

イロト イヨト イヨト イヨト

- Given expert demonstrations: $D = \{(s_1^i, a_1^i, s_2^i, \cdots, s_H^i, a_H^i)\}_{i=1}^m$.
- BC reduces IL to supervised learning:
 - BC firstly splits trajectories into labeled data with states as inputs and actions as targets.
 - Then BC learns a mapping (e.g., neural networks) from state space to action space via any supervised learning methods.

< 同 ▶ < ∃ ▶

• Mathematically, BC learns a policy to minimize the population 0-1 risk.

$$\mathcal{L}_{\mathsf{pop}}\left(\widehat{\pi}, \pi^{*}\right) = \frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{s_{t} \sim f_{\pi^{*}}^{t}} \left[\mathbb{E}_{a \sim \widehat{\pi}_{t}}(\cdot|s_{t}) \left[\mathbb{I}\left(a \neq \pi_{t}^{*}\left(s_{t}\right)\right) \right] \right],$$

where $f_{\pi^*}^t(s) = \Pr_{\pi^*}(s_t = s)$.

• With expert dataset D, BC optimizes the following empirical risk.

$$\mathcal{L}_{\mathsf{emp}}\left(\widehat{\pi}, \pi^*\right) = \frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{s_t \sim f_D^t} \left[\mathbb{E}_{a \sim \widehat{\pi}_t}(\cdot|s_t) \left[\mathbb{I}\left(a \neq \pi_t^*\left(s_t\right)\right) \right] \right]$$

where $f_D^t(s) = \frac{\sum_{i=1}^m \mathbb{I}(s_t^i = s)}{m}$.

< ロ > < 同 > < 回 > < 回 >

- BC does not need to interact with the MDP and optimizes the empirical risk in an offline manner.
- ▶ Given expert dataset D, we define Π_{mimic}(D) as the set of policies which are compatible with D.

$$\Pi_{\min}(D) \triangleq \left\{ \pi \in \Pi : \forall t \in [H], s \in \mathcal{S}_t(D), \pi_t(\cdot \mid s) = \delta_{\pi_t^*(s)} \right\},\$$

where $S_t(D) = \{s_t^i\}_{i=1}^m$ and δ_a is a distribution over \mathcal{A} which puts all probability mass on a.

▶ It is easy to check that $\forall \hat{\pi} \in \Pi_{\min}(D)$, $\mathcal{L}_{emp}(\pi, \pi^*) = 0$, meaning that the solution of BC lies in $\Pi_{\min}(D)$.

(a) < (a) < (b) < (b)

Theorem 1

Consider any policy $\hat{\pi} \in \Pi_{\min}(D)$,

The expected sub-optimality is bounded by,

$$J(\pi^*) - \mathbb{E}[J(\widehat{\pi})] \lesssim \min\left\{H, \frac{|\mathcal{S}|H^2}{m}\right\}$$

For any $\delta \in (0, \min\{1, H/10\}]$, w.p. $\geq 1 - \delta$, the sub-optimality is bounded by,

$$J(\pi^*) - J(\widehat{\pi}) \lesssim \frac{|\mathcal{S}|H^2}{m} + \frac{\sqrt{|\mathcal{S}|}H^2\log(H/\delta)}{m}$$

< ロ > < 同 > < 回 > < 回 >

- BC enjoys a convergence rate of $\frac{1}{m}$, which is rare in decision-making tasks.
- The sub-optimality of BC grows <u>quadratically</u> w.r.t the horizon, which is referred to the phenomenon of compounding error.

イロト イヨト イヨト イヨ

An Illusrating Example

- Consider the three-state MDP. There are two actions $\mathcal{A} = \{B, R\}$. $d_0 = (\frac{1}{m+1}, 1 \frac{1}{m+1}, 0)$.
- The expert policy $\pi_t^*(s) = B, \forall s \in S, \forall t \in [H] \text{ and } J(\pi^*) = H.$
- ▶ The expert dataset $D = \{(s_t^i, a_t^i)_{t=1}^H\}_{i=1}^m$ where $s_t^i \stackrel{i.i.d.}{\sim} d_0, \forall t \in [H].$

An Illusrating Example

- For each step $t \in [H]$, with a constant probability $((1 \frac{1}{m+1})^m \ge e^{-1})$, s_1 is not covered in $S_t(D)$. The learner $\hat{\pi}$ does not know how to act when visiting s_1 at step t.
- For π̂, at step t, if π̂ does not make any mistakes before (or it has been transited into s₃),
 w.p. ≥ 1/(m+1), π̂ encounters s₁, makes a mistake and suffers a sub-optimality of H − t.
- The total sub-optimality $\gtrsim \sum_{t=1}^{H} (1 \frac{1}{m+1})^{t-1} \frac{1}{m+1} (H-t) \gtrsim \frac{H^2}{m}$.

イロト イヨト イヨト

- We first bridge the connection between sub-optimality and the population 0-1 risk.
- For each $\hat{\pi} \in \Pi_{\text{mimic}}$, we upper bound the population risk $\mathcal{L}_{\text{pop}}(\hat{\pi}, \pi^*)$ with a missing mass argument.

(a) < (a) < (b) < (b)

Lemma 1 ([Ross et al., 2011]

For all policy $\hat{\pi}$, we have $J(\pi^*) - J(\hat{\pi}) \leq H^2 \mathcal{L}_{pop}(\hat{\pi}, \pi^*),$ where $\mathcal{L}_{pop}(\hat{\pi}, \pi^*) = \frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{s_t \sim f_{\pi^*}^t} \left[\mathbb{E}_{a \sim \widehat{\pi}_t(\cdot|s_t)} \left[\mathbb{I} \left(a \neq \pi_t^* \left(s_t \right) \right) \right] \right]$

< ロ > < 同 > < 回 > < 回 >

We first upper bound the sub-optimality with the total variation between two occupancy measures.

$$J(\pi^*) - J(\hat{\pi}) \le 2 \sum_{t=1}^{H} D_{\mathrm{TV}}(P_t^{\pi^*}, P_t^{\hat{\pi}}),$$

where $P_t^{\pi}(s, a) = \Pr_{\pi}(s_t = s, a_t = a).$

• Then we derive a recursion formula of $D_{\mathrm{TV}}(P_t^{\pi^*}, P_t^{\hat{\pi}})$.

$$\underbrace{D_{\mathrm{TV}}(P_t^{\pi^*}, P_t^{\hat{\pi}})}_{\text{Accumulated error to step }t} \leq \underbrace{\mathbb{E}_{s_t \sim f_{\pi^*}^t} \left[\mathbb{E}_{a \sim \widehat{\pi}_t(\cdot|s_t)} \left[\mathbb{I} \left(a \neq \pi_t^* \left(s_t \right) \right) \right] \right]}_{\text{Error at step }t} + \underbrace{D_{\mathrm{TV}}(P_{t-1}^{\pi^*}, P_{t-1}^{\hat{\pi}})}_{\text{Accumulated error to step }t-1}.$$
(1)

Expanding the above formula yields the desired result.

(a) < (a) < (b) < (b)

Lemma 2

For each $\hat{\pi} \in \Pi_{\min}(D)$, where $\Pi_{\min}(D)$ is the set of policies which are compatible with D.

• The expected 0-1 population risk of $\hat{\pi}$ has an upper bound.

$$\mathbb{E}\left[\mathcal{L}_{\text{pop}}(\hat{\pi}, \pi^*)\right] \leq \frac{4}{9} \frac{|\mathcal{S}|}{m}$$

• $\forall \delta \in (0, \min\{1, H/10\})$, w.p. $1 - \delta$, we have

$$\mathcal{L}_{\text{pop}}(\hat{\pi}, \pi^*) \le \frac{4|\mathcal{S}|}{9m} + \frac{3\sqrt{|\mathcal{S}|}\log(H/\delta)}{m}$$

A (1) > A (2) > A

- ► For each $\hat{\pi} \in \Pi_{\min(c}(D)$, $\mathcal{L}_{pop}(\hat{\pi}, \pi^*) = \frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{s_t \sim f_{\pi^*}^t} \left[\mathbb{E}_{a \sim \widehat{\pi}_t(\cdot|s_t)} \left[\mathbb{I} \left(a \neq \pi_t^* \left(s_t \right) \right) \right] \right] \leq \frac{1}{H} \sum_{t=1}^{H} \mathbb{E}_{s_t \sim f_{\pi^*}^t} \left[\mathbb{I}(s_t \notin S_t(D)) \right] = \frac{1}{H} \sum_{t=1}^{H} \sum_{s \in \mathcal{S}} f_{\pi^*}^t(s) \mathbb{I}(s_t \notin S_t(D)).$
- For step t, we take expectation w.r.t. D and obtain that

$$\mathbb{E}\left[\sum_{s\in\mathcal{S}}f_{\pi^*}^t(s)\mathbb{I}(s_t\notin S_t(D))\right] = \sum_{s\in\mathcal{S}}f_{\pi^*}^t(s)\Pr(s_t\notin S_t(D)) = \sum_{s\in\mathcal{S}}f_{\pi^*}^t(s)(1-f_{\pi^*}^t(s))^m \stackrel{(1)}{\leq} \frac{4|\mathcal{S}|}{9m},$$

where inequality (1) follows that $\max_{x \in [0,1]} x(1-x)^m \leq \frac{4}{9m}$.

► The term $\mathbb{E}\left[\sum_{s \in S} f_{\pi^*}^t(s)\mathbb{I}(s_t \notin S_t(D))\right]$ is called "missing mass" which is the probability mass contributed by the items uncovered in dataset.

イロト イヨト イヨト

Definition 3 (Missing mass)

Let P be the probability distribution over \mathcal{X} . Suppose that X^m are i.i.d. drawn from P. Let $n_x(X^m) = \sum_{i=1}^m \mathbb{I}(X^i = x)$ denote the number of times that the symbol x is observed in X^m . Then the missing mass $m_0(p, X^m) = \sum_{x \in \mathcal{X}} p(x) \mathbb{I}(n_x(X^m) = 0)$ which is defined as the probability mass contributed by symbols are uncovered in X^m .

イロト イヨト イヨト

Theorem 4 ([McAllester and Ortiz, 2003])

Consider an arbitrary distribution P on X, and let $X^m \stackrel{i.i.d.}{\sim} P$ be a dataset of m samples drawn i.i.d. from P. Consider any $\delta \in (0, \frac{1}{10}]$. Then, w.p. $1 - \delta$,

$$\mathfrak{m}_{0}(\nu, X^{m}) - \mathbb{E}\left[\mathfrak{m}_{0}(\nu, X^{m})\right] \leq \frac{3\sqrt{|\mathcal{X}|}\log(1/\delta)}{m}$$

Tian Xu (Nanjing University)

The Fundamental Limits of Imitation Learning

< ロ > < 同 > < 三 > < 三 >

We have obtained the upper bound of the expected missing mass.

$$\mathbb{E}\left[\sum_{s\in\mathcal{S}} f_{\pi^*}^t(s)\mathbb{I}(s_t \notin S_t(D))\right] \leq \frac{4|\mathcal{S}|}{9m}.$$

▶ With the concentration argument for missing mass, we obtain the high probability bound. For any $\delta \in (0, \frac{1}{1o}]$, w.p. $\geq 1 - \delta$,

$$\sum_{s \in \mathcal{S}} f_{\pi^*}^t(s) \mathbb{I}(s_t \notin S_t(D) \le \frac{4|\mathcal{S}|}{9m} + \frac{3\sqrt{|\mathcal{S}|}\log(H/\delta)}{m}.$$

イロト イヨト イヨト イヨ

Background

Behavioral Cloning

Lower bound

Missing Proof

Tian Xu (Nanjing University)

The Fundamental Limits of Imitation Learning

< □ ▶ < □ ▶ < 直 ▶ < 直 ▶ < 亘 ▶ < 亘 ♪ < ○ へ () March 26, 2021 26 / 47

Theorem 5

Under the no-interaction setting, for any learner $\hat{\pi}$, there exists an MDP \mathcal{M} and a deterministic expert policy π^* such that the expected sub-optimality of the learner is lower bounded by,

$$J_{\mathcal{M}}(\pi^*) - \mathbb{E}\left[J_{\mathcal{M}}(\widehat{\pi})\right] \gtrsim \min\left\{H, |\mathcal{S}|H^2/m\right\}$$

Furthermore this lower bound applies even when the learner operates in the active setting.

A (1) > A (1) > A

- The upper bound of BC meets the lower bound which implies that BC is already <u>minimax</u> optimal under the no-interaction setting in IL.
- This lower bound also holds in the active setting which suggests that the ability to actively query the expert does not reduce the hardness of problems.

A (1) > A (2) > A

The hard MDPs

- ► There are |S| states and |A| actions. At each state, there is an optimal action (the green arrow). The state b is a bad and absorbing state.
- The initial state distribution $\rho = \left(\frac{1}{m+1}, \dots, \frac{1}{m+1}, 1 \frac{|\mathcal{S}|-2}{m+1}, 0\right).$
- At each state except b, when the agent takes the optimal action, it will be renewed according ρ and get +1 reward. Otherwise, it will be transited to b and can not get rewards anymore.

< ∃ >

- For any learner $\hat{\pi}$, our target is to lower bound $\max_{\mathcal{M},\pi^*} J_{\mathcal{M}}(\pi^*) \mathbb{E}[J_{\mathcal{M}}(\hat{\pi}(D))].$
- It suffices to lower bound the Bayes expected sub-optimality $\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}}[J_{\mathcal{M}}(\pi^*) - \mathbb{E}[J_{\mathcal{M}}(\hat{\pi}(D))]]$, where \mathcal{P} is a joint distribution over MDPs and expert policies.
- ► The construction of P: π^{*} ~ Unif (Π_{det}) and M = M[π^{*}] is determined by the MDP template constructed above.

< ロ > < 同 > < 回 > < 回 >

- The correlation between $(\pi^*, \mathcal{M}[\pi^*])$ and D.
- Conditioned on $(\pi^*, \mathcal{M}[\pi^*])$, D is obtained by rolling out π^* on $\mathcal{M}[\pi^*]$.
- Conversely, conditioned on D, $(\pi^*, \mathcal{M}[\pi^*]) \sim \mathcal{P}(D)$ where $\pi^* \sim \text{Unif}(\Pi_{\text{mimic}}(D))$ and $\mathcal{M} = \mathcal{M}[\pi^*].$
- Then we have

$$\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}}\left[H - \mathbb{E}\left[J_{\mathcal{M}}(\widehat{\pi}(D))\right]\right] = \mathbb{E}\left[\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[H - J_{\mathcal{M}}(\widehat{\pi}(D))\right]\right]$$

A D > A B > A B > A B >

Lemma 6

Define the stopping time τ as the first time t that the learner encounters a state $s_t \notin S_t(D)$ that has not been visited in D at time t. That is,

$$\tau = \begin{cases} \inf \{t : s_t \notin \mathcal{S}_t(D) \cup \{b\}\} & \exists t : s_t \notin \mathcal{S}_t(D) \cup \{b\}\\ H & otherwise \end{cases}$$

Then conditioned on the dataset D, we have

$$\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[J\left(\pi^*\right) - \mathbb{E}\left[J(\widehat{\pi}(D))\right]\right] \ge \left(1 - \frac{1}{|\mathcal{A}|}\right) \mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[\mathbb{E}_{\widehat{\pi}(D)}\left[H - \tau\right]\right].$$

When $\hat{\pi}$ encounters an uncovered state at τ , with probability $\geq (1 - \frac{1}{|\mathcal{A}|})$, $\hat{\pi}$ takes an non-optimal action and suffers a sub-optimality of $H - \tau$.

Tian Xu (Nanjing University)

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We apply the above useful lemma and obtain that

$$\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}}\left[J\left(\pi^*\right) - \mathbb{E}\left[J\left(\widehat{\pi}(D)\right)\right]\right] \ge \left(1 - \frac{1}{|\mathcal{A}|}\right) \mathbb{E}\left[\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[\mathbb{E}_{\widehat{\pi}(D)}\left[H - \tau\right]\right]\right],$$

$$\stackrel{(1)}{\ge} \left(1 - \frac{1}{|\mathcal{A}|}\right) \frac{H}{2} \mathbb{E}\left[\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[\Pr_{\widehat{\pi}(D)}\left[\tau \le \lfloor H/2 \rfloor\right]\right]\right]$$

$$= \left(1 - \frac{1}{|\mathcal{A}|}\right) \frac{H}{2} \mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}}\left[\mathbb{E}\left[\Pr_{\widehat{\pi}(D)}\left[\tau \le \lfloor H/2 \rfloor\right]\right]\right],$$

where inequality (1) follows the Markov's inequality.

イロト イヨト イヨト イヨ

Lemma 7

For any learner $\hat{\pi}$,

$$\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}}\left[\mathbb{E}\left[\Pr_{\widehat{\pi}(D)}\left[\tau \leq \lfloor H/2 \rfloor\right]\right] \geq 1 - \left(1 - \frac{|\mathcal{S}| - 2}{e(N+1)}\right)^{\lfloor H/2 \rfloor} \gtrsim \min\left\{1, \frac{|\mathcal{S}|H}{N}\right\}$$

Tian Xu (Nanjing University)

The Fundamental Limits of Imitation Learning

▶ ◀ Ē ▶ Ē ∽ ९ (~ March 26, 2021 34 / 47

イロト 不得 トイヨト イヨト

Background

Behavioral Cloning

Lower bound

Missing Proof

Tian Xu (Nanjing University)

March 26, 2021 35 / 47

э

イロン スピン イヨン イヨン

Lemma 8

Define the stopping time τ as the first time t that the learner encounters a state $s_t \notin S_t(D)$ that has not been visited in D at time t. That is,

$$\tau = \begin{cases} \inf \{t : s_t \notin \mathcal{S}_t(D) \cup \{b\}\} & \exists t : s_t \notin \mathcal{S}_t(D) \cup \{b\}\\ H & otherwise \end{cases}$$

Then conditioned on the dataset D, we have

$$\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[J\left(\pi^*\right) - \mathbb{E}\left[J(\widehat{\pi}(D))\right]\right] \ge \left(1 - \frac{1}{|\mathcal{A}|}\right) \mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[\mathbb{E}_{\widehat{\pi}(D)}\left[H - \tau\right]\right].$$

< ロ > < 同 > < 三 > < 三 >

Proof of Lemma

► We define an useful random variable \(\tau_b\) to be the first time the learner first encounters the state b.

$$\tau_b = \begin{cases} \inf \{t : s_t = b\} & \exists t : s_t = b \\ H + 1 & \text{otherwise} \end{cases}$$

- We have $H \mathbb{E}_{(\pi^*, \mathcal{M}) \sim \mathcal{P}(D)}[J(\widehat{\pi})] = \mathbb{E}_{(\pi^*, \mathcal{M}) \sim \mathcal{P}(D)}[\mathbb{E}_{\widehat{\pi}}[H \tau_b + 1]].$
- For each $t \in [H]$, we consider the probability $\Pr_{\hat{\pi}}(\tau_b = t + 1)$.

$$\Pr_{\hat{\pi}} (\tau_b = t + 1) \ge \Pr_{\hat{\pi}} (\tau_b = t + 1, \tau = t) = \sum_{s \in \mathcal{S}} \Pr_{\hat{\pi}} (\tau_b = t + 1, \tau = t, s_t = s)$$
$$= \sum_{s \in \mathcal{S}} \Pr_{\hat{\pi}} (\tau_b = t + 1 | \tau = t, s_t = s) \Pr_{\hat{\pi}} (\tau = t, s_t = s)$$
$$= \sum_{s \in \mathcal{S}} (1 - \widehat{\pi}_t (\pi_t^*(s) \mid s)) \Pr_{\hat{\pi}} (\tau = t, s_t = s)$$

< ロ > < 同 > < 三 > < 三 >

Taking expectation yields that

$$\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[\left(1-\widehat{\pi}_t\left(\pi_t^*(s)\mid s\right)\right)\operatorname{Pr}_{\hat{\pi}}\left(\tau=t,s_t=s\right)\right]$$

$$\stackrel{(1)}{=}\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[\left(1-\widehat{\pi}_t\left(\pi_t^*(s)\mid s\right)\right)\right]\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[\operatorname{Pr}_{\hat{\pi}}\left(\tau=t,s_t=s\right)\right]$$

$$\stackrel{(2)}{=}\left(1-\frac{1}{|\mathcal{A}|}\right)\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[\operatorname{Pr}_{\hat{\pi}}\left(\tau=t,s_t=s\right)\right],$$

Equation (1) holds since $\pi_1^*, \dots, \pi_{t-1}^*$ and π_t^* are independent. Equation (2) follows that at states uncovered in D, the expert action is uniformly drawn from the action space.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- ► Taking summation over *s* yields $\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[\Pr_{\hat{\pi}}\left(\tau_b = t + 1\right)\right] \ge \left(1 - \frac{1}{|\mathcal{A}|}\right)\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[\Pr_{\hat{\pi}}\left(\tau = t\right)\right].$
- For the sub-optimality, we have

$$H - \mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}[J(\widehat{\pi})] = \mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[\mathbb{E}_{\widehat{\pi}}\left[H - \tau_b + 1\right]\right]$$
$$\geq \left(1 - \frac{1}{|\mathcal{A}|}\right)\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}(D)}\left[\mathbb{E}_{\widehat{\pi}}\left[H - \tau\right]\right]$$

< ロ > < 同 > < 回 > < 回 >

Lemma 9

For any learner $\hat{\pi}$,

$$\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}}\left[\mathbb{E}\left[\Pr_{\widehat{\pi}(D)}\left[\tau \le \lfloor H/2 \rfloor\right]\right] \ge 1 - \left(1 - \frac{|\mathcal{S}| - 2}{e(N+1)}\right)^{\lfloor H/2 \rfloor} \gtrsim \min\left\{1, \frac{|\mathcal{S}|H}{N}\right\}$$

Tian Xu (Nanjing University)

The Fundamental Limits of Imitation Learning

▶ < 글 > 글 ∽ Q (~ March 26, 2021 40 / 47

イロト 不得 トイヨト イヨト

• For each $t \in [H]$, we consider $\Pr_{\widehat{\pi}(D)}[\tau = t]$.

$$\begin{aligned} \Pr_{\widehat{\pi}(D)}[\tau = t] &= \Pr_{\widehat{\pi}(D)}\left[s_t \notin \mathcal{S}_t(D) \cup \{b\}, \forall t' < t, s_{t'} \in \mathcal{S}_{t'}(D) \cup \{b\}\right] \\ &= \Pr_{\widehat{\pi}(D)}\left[s_t \notin \mathcal{S}_t(D) \cup \{b\}, \forall t' < t, s_{t'} \in \mathcal{S}_{t'}(D) \setminus \{b\}\right] \\ &= \Pr_{\pi^*}\left[s_t \notin \mathcal{S}_t(D) \cup \{b\}, \forall t' < t, s_{t'} \in \mathcal{S}_{t'}(D) \setminus \{b\}\right] \\ &= (1 - \rho\left(\mathcal{S}_t(D) \setminus \{b\}\right)\right) \prod_{t'=1}^{t-1} \rho\left(\mathcal{S}_{t'}(D) \setminus \{b\}\right) \end{aligned}$$

•
$$\operatorname{Pr}_{\widehat{\pi}(D)}[\tau \leq \lfloor H/2 \rfloor] = 1 - \prod_{t=1}^{\lfloor H/2 \rfloor} \rho(\mathcal{S}_t(D) \setminus \{b\}).$$

イロト 不得 トイヨト イヨト

• We take expectation w.r.t the expert dataset.

$$\mathbb{E}\left[\prod_{t=1}^{\lfloor H/2 \rfloor} \rho\left(\mathcal{S}_{t}(D) \setminus \{b\}\right)\right] = \prod_{t=1}^{\lfloor H/2 \rfloor} \mathbb{E}\left[\rho\left(\mathcal{S}_{t}(D) \setminus \{b\}\right)\right]$$
$$= \prod_{t=1}^{\lfloor H/2 \rfloor} \sum_{s} \rho(s) \Pr\left(s \in \mathcal{S}_{t}(D) \setminus \{b\}\right)$$
$$= \prod_{t=1}^{\lfloor H/2 \rfloor} \sum_{s} \rho(s) (1 - (1 - \rho(s))^{m})$$
$$= (1 - \gamma)^{\lfloor H/2 \rfloor},$$

where $\gamma = \sum_{s} \rho(s)(1 - \rho(s))^m$ is the missing mass.

$$\blacktriangleright \mathbb{E}\left[\Pr_{\widehat{\pi}(D)}\left[\tau \leq \lfloor H/2 \rfloor\right]\right] = 1 - (1 - \gamma)^{\lfloor H/2 \rfloor}.$$

イロト イヨト イヨト イヨ

Then we lower bound the missing mass.

$$\gamma = \sum_{s \in \mathcal{S}} \rho(s) (1 - \rho(s))^m \ge \frac{|\mathcal{S}| - 2}{m+1} \left(1 - \frac{1}{m+1} \right)^m \stackrel{(1)}{\ge} \frac{|\mathcal{S}| - 2}{e(m+1)}.$$

where inequality (1) follows that $(1 + \frac{1}{m})^m \le e$.

• $\mathbb{E}_{(\pi^*,\mathcal{M})\sim\mathcal{P}}\left[\mathbb{E}\left[\Pr_{\widehat{\pi}}\left[\tau \leq \lfloor H/2 \rfloor\right]\right]\right] = 1 - (1 - \gamma)^{\lfloor H/2 \rfloor} \geq 1 - \left(1 - \frac{|\mathcal{S}|-2}{e(N+1)}\right)^{\lfloor H/2 \rfloor} \stackrel{(2)}{\gtrsim} \min\left\{1, \frac{|\mathcal{S}|H}{N}\right\},$ where inequality (2) follows that $(1 + \frac{x}{N})^N \leq \exp(x) \leq 1 + \frac{x}{2}$ when $x \in (-1, 0)$.

イロト イヨト イヨト

[Abbeel and Ng, 2004] Abbeel, P. and Ng, A. Y. (2004).

Apprenticeship learning via inverse reinforcement learning.

In <u>Machine Learning</u>, Proceedings of the Twenty-first International Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004, volume 69.

[Ho and Ermon, 2016] Ho, J. and Ermon, S. (2016).

Generative adversarial imitation learning.

In Advances in Neural Information Processing Systems 29 (NeurIPS'16), pages 4565-4573.

イロト 不得下 イヨト イヨト

Bibliography (cont.)

[McAllester and Ortiz, 2003] McAllester, D. A. and Ortiz, L. E. (2003).

Concentration inequalities for the missing mass and for histogram rule error.

J. Mach. Learn. Res., 4:895–911.

[Pomerleau, 1991] Pomerleau, D. (1991).

Efficient training of artificial neural networks for autonomous navigation.

Neural Computation, 3(1):88–97.

[Ross et al., 2011] Ross, S., Gordon, G. J., and Bagnell, D. (2011).

A reduction of imitation learning and structured prediction to no-regret online learning.

In <u>Proceedings of the 14th International Conference on Artificial Intelligence and Statistics</u> (AISTATS'11), pages 627–635.

Tian Xu (Nanjing University)

イロト 不得 トイヨト イヨト

[van Hasselt et al., 2016] van Hasselt, H., Guez, A., and Silver, D. (2016).

Deep reinforcement learning with double q-learning.

In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pages 2094–2100. AAAI Press.

Thank you!

Feel free to contact me for more discussions!

xut@lamda.nju.edu.cn

Tian Xu (Nanjing University)

The Fundamental Limits of Imitation Learning

March 26, 2021 47 / 47

イロト イヨト イヨト イヨ