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Off Policy Evaluation

» Goal: To estimate the expected return of the learned policy using data generated
by a different policy.
+ Given a dataset D = {r;}), of N trajectories, where 7; =
sé,ab, st sk_,,ak_,,al is generated by a behavior policy 7,
+ We desire to evaluate the policy m,
» Off-policy Evaluation (OPE) is to estimate the value:
V() = Eo[Yi=1v'1t]

where a; ~ (- |S¢), Sey1 ~ P(- |Sp ar), e ~ R(Se, ar)
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Direct Method

® Model-free: Fitted-Q-Evaluation (FQE)
Use Q(s, alf) to estimate Q™<(s, a).
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v =11+ R, Q,_._l(;r:,H, af), Qo=0.

Z Tt az ) _'Ui}z-

e Model-based: Estimate P and R from data, and then use the learned MDP to

estimate V(7).
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Importance Sampling

® Naive importance sampling

t Rg(a;, |S:!]

7 1
where w! = =11 Al
o U'=0mg(al,ls)

® Per-decision importance sampling

t=0

u ! mo(as|s;) t 1 = it
J(ﬂ-g):]E'rNﬂg(‘r) Z Hm ’)’T(S,a) r"‘vgzzwtry Tt

t'=0
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Importance Sampling

® Weighted importance sampling

1 t We(agr |S:1)

g (ﬂZr |S;!)
-_— - r_ T -
E?:l Wé =0 nﬁ(atllsél)

=0 TTB (a;! |S;l)

— .
WE = —Ht, — w;:
n t
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Assumptions

For all (s,a) € S x A, if mp(a|s) = 0 then me(als) = 0. I
The time horizon L is finite. I

/ANJING UNIVERSITY Learning And Mining from DatA

z



Doubly Robust

¢ Doubly Robust Method was proposed by [Jiang and Li, 2016].

D)= "~FuiR{" )

1=1 t=0

SO (it (s AR it (51)).

i=1 t=0
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Variance Reduction

Goal: Estimate 6 := E[X] given a sample of X.
The estimator will be f; := X.

If we have a sample of another random variable Y, with known expected value,
E[Y].

* We can estimate 6 with 0 := X — Y + E[Y].

671 has the same mean with ég.
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Variance Reduction

Var(f1) = Var(X).

Var(f) = Var(X) + Var(Y) — 2Cov(X, Y).

If 2Cov(X, Y) > Var(Y), then #, has lower variance than 6;.

Note that the optimal control variate is Y := X, since then Var(f,) = 0.

NANJING UNIVERSITY Learning And Mining from DatA




Doubly Robust

DR(D) = iiﬁ/twini

i=1 t=0

X

n o0

=303 (wia (s A - wisyo ().

i=1 t=0
N

Y

® Y is mean zero, i.e., E[Y] =0.
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Doubly Robust

i=1 t=0
X
S (st a) - vt (7))
i=1t=0

q* (S Af) m RY™ 4y (S15)

® Y is a decent approximation of X, and therefore DR may have lower variance.
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Empirical Results
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Figure 1: Empirical results for three different experimental setups. All plots in this paper have the same format: they
show the mean squared error of different estimators as n, the number of episodes in D, increases. Both axes always use a
logarithmic scale and standard error bars are included from 128 trials. All plots use the following legend:
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Off-policy j-step return

g (D) =189 (D) + AMUTV (D)
g(D) = lim g9 (D).
Jj—roC

° ISU)(D) is an estimate of IE[ZJ;:O vER|H ~ me], construted from D using an
importance sampling method.

e AMY)(D) denote a primarily model-based prediction from D of
E 2 v RelH ~ me].
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Blending IS and Model

® Weighting scheme

X* carg mlln MSE(xTg 7 (D), v(m.)),
xcRI|T

® Bias-variance decomposition

X" €arg ml‘n Bias(xTg7(D))? + Var(x"g7 (D))
xEAIT
=arg min x'[Q, + b,b]|x,
xeAlT|
where Q,(i, ) = Cov(g\/)(D),g7)(D)), and b,(j) = E[g7)(D)] — v(m.). And

suppose ZJ‘Z‘IXJ =1.

Ghixs LalVio

2 NANJING UNIVERSITY Learning And Mining from DatA




Bias-variance Decomposition

MSE(x"g7(D), v(re)) < MSE(x" g7(D), Elgz(D)]) + MSE(E[gz(D)], v(re))
= xTQux + (x"b,)?




Modeling Guided Importance Sampling Combining Estimator

® Variance reduction

noj n
g (D) = YR Yy wiem (57
\i:l t=0 =1
@ ®)
noJ
- ZZwt (wié’re (StH",Afi) —wi_ o7 (Sfll)) .
=1 t=0

(©)
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Estimating €2,

We can write g¥/) (D) as the sum of n terms:

gY/(D) = Zg“) 4)
where
9" (D) (thszH)w“ whe™ (Sf1)
=
-3 (o (st ) o (51)
So, _

Cov(¢(D), ¢ (D)) = Cov (Z 9 (D), ngf)w)) :
é] ,‘% 7"\,% k=1 k=1
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Estimating €2,

giU)(D)s' distributions are identical.

Notice that w} = py/ > 7, o g,-(j)(D) are not independent.

But they become less dependent as n — oc.

Because the only dependence of gi('j)(D) comes from the denominator of wi,
which convergence almost surely to n.
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Estimating €2,

Cov(g")(D), gV (D))

= Y Y co(spg? (D)

ke{l,...,n}le{l,...,n}
(a) i i
Y Cov(of (D), (D))

n Cov (4((D), 9%)(D))

® (a) comes from the assumption that they are independent.

® (b) comes from that they are identical.
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Estimating €2,

0.(0,5) = —= > (s (D) -5 (D)) @9
k=1

< (97 (D) -5 (D).

where
n

—(Ji 1 Ji
a7 (D) :=5;g§c (D).
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Estimating b,

® When n, the number of trajectories in D, is small, variance tends to be the root
cause of high MSE.

® Proposed an estimator that underestimates the bias initially, but becomes correct
as n increase.

e Let Cl(g(*)(D), ) be a 1 — & confidence interval on the expected value of the
random variable g(>)(D).

® We estimate b,(j) as

bu(j) = dist (g(jj)(D), CI(g™>) (D), 0.5))
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Consistent estimator
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Definition 1 (Almost Sure Convergence). A sequence of
random variables, (X,,)>2, converges almost surely to the
random variable X if

Pr(lim Xn:X):l.

n—00

We write X,, —= X to denote that the sequence (X,,)>°
convergences almost surely to X.

Definition 2. Let 6 be a real number and (8,)3%, be
an infinite sequence of random variables. We call 0, a
(strongly) consistent estimator of 0 if and only if 6,, =5 0.
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Law of Large Numbers

Theorem 6 (Khintchine Strong Law of Large Numbers).
Let {X;}52, be independent and identically distributed
random variables. Then (+ 37 | X;)°2 | is a sequence of
random variables that converges almost surely to E[X1].

Theorem 7 (Kolmogorov Strong Law of Large Numbers).
Let {X;}32, be independent (not necessarily identically
distributed) random variables. If all X; have the same
mean and bounded variance (i.e., there is a finite con-
stant b such that for all i > 1, Var(X;) < b), then
(1300, Xi)22, is a sequence of random variables that
converges almost surely to B[ X,].
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BIM Convergence

Assumption 4 (Bounded importance weight). There ex-
ists a constant § < oo such that for all (t,i) € N> x
{1,...,n}, pi < B surely.

Theorem 3. If Assumption 4 holds, there exists at least
one j € J such that g9) (D) is a strongly consistent esti-
mator of v(7.), Bn —b, 250, and ﬁn —Q, 250, then
BIM(D, Q,,. by,) % v(,). Proof See Appendix E.
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Consistency of BIM

® First assume we have true Q, and b,.
Let the j* be an index such that gU")(D) 22 v(.), which exits by assumption.

Let y be a weight vector that places a weight of one on g(j*)(D) and weight of
zero on other returns.

Then yTg(D) = gU*)(D) 25 v(me).

® | P
: ﬁ K .% ILAE— “U
% LearningAnd Mining,from DatA.
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Consistency of BIM

® Remember that
x* € arg min MSE (ngJ(D),Qn, bn)

xEA|T|

o MSE ((x")" g7(D), v (re)) < MSE (y"g5(D),v (rc)
* BIM(D,Q,b,) 2% v (me)
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Consistency of BIM

If f is a continuous function, f(X,) =2 X, and Y, — X, 2230, then f(Y,) 2> X.

e by— by 2% 0and Q, — Q, 0.
e = BIM(D,Q,, by) 25 v(re).
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Consistency of BIM

® (a) holds because f is a continuous

Pr( lim f(¥,) = X) = Pr (lim f(Y - Xo+ X,) = X) function.
¢ (b) holds because it gives sufficient
Ypy (f (nlgrr;o Y, — X, +X,.) = X) conditions for the event in the line
above to hold.
gpr((lgn Yo — X, =0) ¢ d (c) holds because under our
assumptions the two events both
N (f (im xa) = X)) occur with probability one.

b (IS A =
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