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Off Policy Evaluation



Direct Method

• Model-free: Fitted-Q-Evaluation (FQE)
Use Q̂(s, a|θ) to estimate Qπe (s, a).

• Model-based: Estimate P̂ and R̂ from data, and then use the learned MDP to
estimate V (πe).



Importance Sampling

• Naive importance sampling

• Per-decision importance sampling



Importance Sampling

• Weighted importance sampling



Assumptions

Assumption 1

For all (s, a) ∈ S ×A, if πb(a|s) = 0 then πe(a|s) = 0.

Assumption 2

The time horizon L is finite.



Doubly Robust

• Doubly Robust Method was proposed by [Jiang and Li, 2016].



Variance Reduction

• Goal: Estimate θ := E[X ] given a sample of X .

• The estimator will be θ̂1 := X .

• If we have a sample of another random variable Y , with known expected value,
E[Y ].

• We can estimate θ with θ̂2 := X − Y + E[Y ].

• θ̂1 has the same mean with θ̂2.



Variance Reduction

• Var(θ̂1) = Var(X ).

• Var(θ̂2) = Var(X ) + Var(Y )− 2Cov(X ,Y ).

• If 2Cov(X ,Y ) > Var(Y ), then θ̂2 has lower variance than θ̂1.

• Note that the optimal control variate is Y := X , since then Var(θ̂2) = 0.



Doubly Robust

• Y is mean zero, i.e., E[Y ] = 0.



Doubly Robust

• Y is a decent approximation of X , and therefore DR may have lower variance.
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Empirical Results



Off-policy j-step return

• IS(j)(D) is an estimate of E[
∑j

t=0 γ
tRt |H ∼ πe ], construted from D using an

importance sampling method.

• AM(j)(D) denote a primarily model-based prediction from D of
E[
∑∞

t=j γ
tRt |H ∼ πe ].



Blending IS and Model

• Weighting scheme

• Bias-variance decomposition

where Ωn(i , j) = Cov(g(Ji )(D), g(Jj )(D)), and bn(j) = E[g(Jj )(D)]− v(πe). And

suppose
∑|J |

j=1 xj = 1.



Bias-variance Decomposition

Proof.

MSE(xTgJ (D), v(πe)) ≤ MSE(xTgJ (D),E[gJ (D)]) + MSE(E[gJ (D)], v(πe))

= xTΩnx + (xTbn)2



Modeling Guided Importance Sampling Combining Estimator

• Variance reduction



Estimating Ωn



Estimating Ωn

• g
(j)
i (D)s’ distributions are identical.

• Notice that ωi
t = ρit/

∑n
j=1 ρ

j
t , g

(j)
i (D) are not independent.

• But they become less dependent as n→∞.

• Because the only dependence of g
(j)
i (D) comes from the denominator of ωi

t ,
which convergence almost surely to n.



Estimating Ωn

• (a) comes from the assumption that they are independent.

• (b) comes from that they are identical.



Estimating Ωn



Estimating bn

• When n, the number of trajectories in D, is small, variance tends to be the root
cause of high MSE.

• Proposed an estimator that underestimates the bias initially, but becomes correct
as n increase.

• Let CI(g (∞)(D), δ) be a 1− δ confidence interval on the expected value of the
random variable g (∞)(D).

• We estimate bn(j) as
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Consistent estimator



Law of Large Numbers



BIM Convergence



Consistency of BIM

• First assume we have true Ωn and bn.

• Let the j∗ be an index such that g (j∗)(D)
a.s.−→ v(πe), which exits by assumption.

• Let y be a weight vector that places a weight of one on g (j∗)(D) and weight of
zero on other returns.

• Then yTg(D) = g (j∗)(D)
a.s.−→ v(πe).



Consistency of BIM

• Remember that
x? ∈ arg min

x∈∆|J |
MSE

(
x>gJ (D),Ωn, bn

)
• MSE

(
(x?)> gJ (D), v (πe)

)
≤ MSE

(
y>gJ (D), v (πe)

)
• BIM (D,Ωnbn)

a.s.−→ v (πe)



Consistency of BIM

Lemma

If f is a continuous function, f (Xn)
a.s.−→ X , and Yn − Xn

a.s.−→ 0, then f (Yn)
a.s.−→ X .

• b̂n − bn
a.s.−→ 0 and Ω̂n − Ωn

a.s.−→ 0.

• ⇒ BIM(D, Ω̂n, b̂n)
a.s.−→ v(πe).



Consistency of BIM

• (a) holds because f is a continuous
function.

• (b) holds because it gives sufficient
conditions for the event in the line
above to hold.

• d (c) holds because under our
assumptions the two events both
occur with probability one.
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