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Overview

- We use simple examples to illustrate the divergence issues of
Q-Learning with function approximation.

- We introduce the practical technique to address this issue:
target network.

- We discuss why this technique can work.



Introduction



Markov Decision Processes

- Infinite-horizon MDPs with time-independent dynamics
M = (87 ‘A7 ’Y? P7 R)
- Bellman Optimality Equation:

Q*(s,a) = R(s,a) +vEs ~p(.|s,a) {gﬂgﬁ Q*(S'va’)} , Y(s,a) € S x A
- Bellman operator 7
T(Q)(S, Cl) = R(S, G) + 'Y]ES/NP(-\S,G) [magx Q(S’, a/):| .

However, in practice, we do not know P so that 7 is not
applicable.
- ~-contractility:
max [T(Qi)(s,a) — T(Q)(s,a)| <~ S Qi(s, a) — Qu(s, a)| -
s,a

(s,a)



Assume we have access to the stream data (s, a, rt, St41)-

- Q-learning:
Qt1(St, ar) = Qe(St, ar) + e {ft + v gﬂgﬁ Qt(St41,a") — Qe(st, C’t):| c

- If we try to linearly parameterize Q(s, a) over the feature ¢. That
is, Q¢(St, at) = é(st, a;) "w. Then, Q-learning becomes:

Wigr = Wt + 1t | It + v max((Se1, @), We) — (d(St, Gr), We) | @(St, Gr).
a’eA



Open Problem

Question: Does Q-Learning converge with any (linear) function
approximation?

Answer: No! (See the next page for the counter-example.)



Divergence of Q-Learning with
Function Approximation



Baird’s Example
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Figure 1: Baird’'s example [ll1, 1995].

- Only one action at each state and reward is 0.

- Q(s,a) = V(s) under this case.



Baird’s Example

i

b1
T
2
T

— 3 c R6X7

A

T
5

T

O O N O O O
O N O O O O
- O O O O O©o

N — —
O O O O O N
O O O O N O
O O O N O O

- T
w=[w’ w' w2 w w* w WG} eR.



Baird’s Example (Important!)

- We have
V() = wP 4+ 20", V(2) = w® +2w?, - -+, V(6) = 2w® + wP

- Lety=10.99 and n = 0.1. Suppose w® = 1 and
w!' =w?, ..., w® = 0. Q-Learning runs:
- state si: wo = wy 4+ n(r +V(6) — V(1)1 = W’ 1, w' 1, V(6) 1

Ay =r+~V(6) — V(1) = 0.980,w° = 1.098,w' = 0.196
- state sp: ws = Wy + n(r +V(6) — V(2))r = w° T, w? 1, V(6) +
Ay = r+~V(6) — V(2) = 1.076,w’ = 1.206,w’ = 0.215
- state sg: W7 = We + n(r +yV(6) — V(6))ps == w° |, w° |, V(6) |
Ag = r+V(6) — V(6) = —0.032,w’ = 1.590, w® = —0.003

- Repeating the above cycle, w° diverges.



Remark on Baird’s Example

- Baird's example suggests that Q-Learning + Function
Approximation may diverge.

- The divergence is not due to step size or to uncertainties about
the environment.
(we numerically observe that diverges happens even though the
step size is very small)

- Divergence is mainly because the extrapolation changes the
“target labels”.



Question on Baird’'s Example

Question: Can Q-Learning converge if we use the exact solution
rather than taking a gradient step?

Answer: No! (See the next page for Tsitsiklis and Van Roy's
counter-example)



Tsitsiklis and Van Roy’s Example
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Figure 2: Tsitsiklis and Van Roy’s Example [Tsitsiklis and Van Roy, 1997].
(Full-step) Q-learning:

6 4
Wiy1 = argmin (W — 29wg)” + (W — 72Wp )2 = —— AW
weR 5

The sequence {w,} diverges when v > 5/6 and wy # 0.
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Tsitsiklis and Van Roy’s Example
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Figure 3: Tsitsiklis and Van Roy’s Example [Tsitsiklis and Van Roy, 1997].
(One-step) Q-learning:

Wakgr = (T 2yn — )Wy,
Wokgo = (T 4yn — 41)Wapy1.

Key factor: (1+2yn —n) - (1 + 4yn — 4n).

When « is sufficiently large (i.e., v > 5/6), and step size i is small (i.e,,
0<n<(5-67)/(8y> — 12y + 4), the sequence {w} diverges.



- Tsitsiklis and Van Roy’s Example is different from Baird’s
Example because the former is not over-parameterized.

- Tsitsiklis and Van Roy’s Example highlights the off-policy issue:
we should update states according to its stationary distribution.
- In that example, we should update the state “2w” more than the
state “w".



Target Q-Learning




Literature Review

- Previous examples suggest Q-Learning with function
approximation is hard to train.
However, many deep RL algorithms work in practice. Why?

- Both claims are true but people often ignore (or underestimate)
an important technique used to train deep RL: target network.

Human-level control through deep reinforcement learning
¥ Mnin, K Kavukcuooly, D Silver, A Rusu, J Veness... - nature, 2015 - nature.com
Tho thery ofefrcamant eaming provido  normatioaccout 1 ool rooled

0 animal behaviour,of how agents may

o9 lﬁF\ﬁiﬂi 16938 4@5&15 bﬁﬁaa/ﬂ&x

Playing atari with deep reinforcement learning

V Mnih, K Kavukcuoglu, D Silver, A Graves... - arXiv preprint arXiv ..., 2013 - andv.org

Wo prosent o st deep eaming model o successfly eam conrlpolos diecty fom
| sensory input using learning. The model is a
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Figure 4: NIPS 2013 Workshop. It Figure 5: Nature in 2015. It solves 57
tasks.

solves 6 tasks.

From NIPS Workshop to Nature: target network is used.
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Lessons from DQN

o V\{ith replay, _With replay, Wit_hout replay, VYithuut replay,
with target Q without target Q with target Q without target Q
Breakout 316.8 240.7 10.2 3.2
Enduro 1006.3 831.4 141.9 291
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894.4 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0

Figure 6: Ablation study of target Q and experience replay [Mnih et al., 2015].

Experience replay is important; target Q makes it better.




Target Network

- Q-Learning:

Wiyt = We + [ft F Vgﬂgﬁ@(stﬂ» a’), we) — (¢(St, ar), Wt>] B(St, At).

- Target Q-Learning:
Wi = We + 1 [ft + vcrpeaﬁ@(stﬂ» a’),w) — (¢(st, ar), Wt>] B(St, ).

where w is the “target parameter”, which is fixed over several
iterations.

- Target Q-Learning updates w periodically with the copy of w;.
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Target Q-Learning

Let w*~" be the target parameter in each epoch k.

Algorithm 1 Target Q-Learning
1. for epoch k =1,2,---, do
2. foriterationt=1,2,---,T—1do

B Wit = We + nt[rtJF’Ymaxa’eA<¢(St+1»a/)vWk71>
(B(St, Ar), we)]B(St, ).

4 end for

5: wh = wr.

6: end for




Baird’s Example Revisited

- Let y = 0.99 and n = 0.1. Suppose w° = 1 and
w!' =w?, .- ,w® = 0. For target Q-Learning:
- state s wo = wy + n(r +4V(6) — V(1)1 = v t,w' 1.

Ay = r++V(6) — V(1) = 0.980,w° = 1.098, w' = 0.196
- state sp: ws = ws + n(r +4V(6) — V(2))pr = w° 1, w? 1.
A, =r++V(6) — V(2) = 0.882,w° = 1.186,w* = 0.176

- state sg: w7 = We + n(r +4V(6) — V(6))ps => w° |, w° |
Ag = r+V(6) — V(6) = —0.823,w° = 1.237,w° = —0.082

- Error does not explode within epoch:
Q-Learning :.wp 1= A1 < Ay < --- < As
Target Q-Learning :wy = A1 > Ay > -+ > Ag



Setup of Target Q-Learning

To make notations clean, let x5 o denote x(s, a).

- In iteration R, target Q-Learning amounts to solve the following
problem with SGD:

F(W; Wk71) = Z (¢;raw - )/s,a)z )
(s,a)

Vs.a = Rs,a +7Es {magx (b;c’a/wkq .

- Randomness is from the index (s, a) and the label ys 4 because
the next state s’ is also random.

19



Analysis of Target Q-Learning

~+ Since miny, F(w; W”H) is an over-determined least square problem,
it must exist a minimizer wi;_, such that F(w;_,; wk=") = 0.

~ After T inner iterations, assume in expectation, we have
E[F(wr; wh=")] — F(w;_,; wk=") < eqps for all outer iteration k. This
implies that (W := wr)

E[sup |60 — T4~ ")sal] < /EIF(wr W) < /oo

(s,a)
~» Then we have
E [HWK _ W*qu} o E[sup ‘¢laWK _ (ZS;TQW*”
(s,a)
< E[sup |¢g WS — T(Wk—1)s,a| + sup [T (Wk—1)s,a — ¢s oW*|]
(s,a) (s,a)
< \/Eopt +VE[ |[WT - W*H¢] e
Ve

S +7KHW0—W*H¢.
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Remark on Target Q-Learning

- For target Q-Learning, if we can control e,p, the convergence
with linear function approximation is guaranteed.

- Target Q-Learning does not contradict with Tsitsiklis and Van
Roy's Example because the latter is not in the
over-parameterization regime.

- We need additional effort to analyze e,p¢, Which depends on
wrk=" when we try to upper bound the variance of SGD update.
- Typical SGD analysis assume the variance is upper bound by a
constant.
- For target Q-Learning, we solve multiple least square problems,
where the variance changes over different problems.

21
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