
Convergence Issues of Q-Learning with
Function Approximation

Ziniu Li

The Chinese University of Hong Kong, Shenzhen

Table of contents

1. Introduction

2. Divergence of Q-Learning with Function Approximation

3. Target Q-Learning

1

Overview

• We use simple examples to illustrate the divergence issues of
Q-Learning with function approximation.

• We introduce the practical technique to address this issue:
target network.

• We discuss why this technique can work.

2

Introduction

Markov Decision Processes

• Infinite-horizon MDPs with time-independent dynamics
M = (S,A, γ,P,R).

• Bellman Optimality Equation:

Q⋆(s,a) = R(s,a) + γEs′∼P(·|s,a)
[
max
a′∈A

Q⋆(s′,a′)
]
, ∀(s,a) ∈ S ×A.

• Bellman operator T :

T (Q)(s,a) = R(s,a) + γEs′∼P(·|s,a)
[
max
a′

Q(s′,a′)
]
.

However, in practice, we do not know P so that T is not
applicable.

• γ-contractility:

max
(s,a)

|T (Q1)(s,a)− T (Q2)(s,a)| ≤ γmax
(s,a)

|Q1(s,a)− Q2(s,a)| .

3

Q-Learning

Assume we have access to the stream data (st,at, rt, st+1).

• Q-learning:

Qt+1(st,at) = Qt(st,at) + ηt

[
rt + γ max

a′∈A
Qt(st+1,a′)− Qt(st,at)

]
.

• If we try to linearly parameterize Q(s,a) over the feature ϕ. That
is, Qt(st,at) = ϕ(st,at)⊤w. Then, Q-learning becomes:

wt+1 = wt + ηt

[
rt + γ max

a′∈A
⟨ϕ(st+1,a′),wt⟩ − ⟨ϕ(st,at),wt⟩

]
ϕ(st,at).

4

Open Problem

Question: Does Q-Learning converge with any (linear) function
approximation?

Answer: No! (See the next page for the counter-example.)

5

Divergence of Q-Learning with
Function Approximation

Baird’s Example

V(1)=w +2w
0 1

V(2)=w +2w
0 2

V(3)=w +2w
0 3

V(4)=w +2w
0 4

V(5)=w +2w
0 5

V(6)=2w +w
 0 6

Figure 1. The star problem

2 ALGORITHMS FOR LOOKUP TABLES

Perhaps the simplest form of reinforcement learning
problem is the task of learning the value function for a
Markov chain, which is a degenerate MDP for which
there is only one possible action to choose from in each
state. Such problems are often solved using algorithms
based upon dynamic programming (Bertsekas 87),
which involves storing information associated with
each state, then updating the information in one state
based upon the information in subsequent states. For
predicting the outcome of a Markov chain, an obvious
learning algorithm is an incremental form of value
iteration, which is defined as:

V x R V x() (')α γ←  + (2)

Update (2) represents the learning that occurs after
observing a transition from state x to state x' with
immediate reinforcement of R. The value of the earlier
state, V(x), is modified to be closer to the value of the
expression on the right side, R+ � V(x'), with the rate of
learning controlled by a learning rate � . For this
particular type of MDP, if each V(x) is a separate entry
in a lookup table, then update (2) is also equivalent to
three other reinforcement learning algorithms: TD(0)
(Sutton 88), Q-learning (Watkins 89), and advantage
learning (Baird 95). If an implementation of update
(2) fails to converge in some cases, then all of these
other algorithms also fail to converge in some cases,
and so it is important to find an algorithm that can
solve this simple MDP using general function-
approximation systems.

3 DIRECT ALGORITHMS

If the MDP has a finite number of states, and each V(x)
is represented by a unique entry in a lookup table, and
each possible transition is experienced an infinite
number of times during learning, then update (2) is

guaranteed to converge to the optimal value function as
the learning rate � decays to zero at an appropriate
rate. The various states can be visited in any order
during learning, and some can be visited more often
than others, yet the algorithm will still converge if the
learning rates decay appropriately (Watkins, Dayan
92). If V(x) was represented by a function-
approximation system other than a lookup table, update
(2) could be implemented directly by combining it with
the backpropagation algorithm (Rumelhart, Hinton,
Williams 86). For an input x, the actual output of the
function-approximation system would be V(x), the
“desired output” used for training would be R+ � V(x'),
and all of the weights would be adjusted through
gradient descent to make the actual output closer to the
desired output. For any particular weight w in the
function-approximation system, the weight change
would be:

∆w R V x V x
V x

w
= + −α γ ∂

∂
()(') ()

()
(3)

Equation (3) is exactly the TD(0) algorithm, by
definition. It could also be called the direct
implementation of incremental value iteration, Q-
learning, and advantage learning. The direct
algorithm reduces to the original algorithm when used
with a lookup table. Tesauro (90,92)has shown very
good results by combining TD(0) with backpropagation
(and also using the more general TD(�)). Since it is
guaranteed to converge for the lookup table, this
approach might be expected to also converge for
general function-approximation systems.
Unfortunately, this is not the case, as is illustrated by
the MDP shown in figure 1. In figure 1, there are six
states, and the value of each state is given by the linear
combination of two weights. Every transition yields a
reinforcement of zero. During training, each possible
transition is observed equally often. The function-
approximation system is simply a lookup table, with
one additional entry giving generalization. This is an

Figure 1: Baird’s example [III, 1995].

• Only one action at each state and reward is 0.
• Q(s,a) = V(s) under this case.

6

Baird’s Example

V(1)=w +2w
0 1

V(2)=w +2w
0 2

V(3)=w +2w
0 3

V(4)=w +2w
0 4

V(5)=w +2w
0 5

V(6)=2w +w
 0 6

Figure 1. The star problem

2 ALGORITHMS FOR LOOKUP TABLES

Perhaps the simplest form of reinforcement learning
problem is the task of learning the value function for a
Markov chain, which is a degenerate MDP for which
there is only one possible action to choose from in each
state. Such problems are often solved using algorithms
based upon dynamic programming (Bertsekas 87),
which involves storing information associated with
each state, then updating the information in one state
based upon the information in subsequent states. For
predicting the outcome of a Markov chain, an obvious
learning algorithm is an incremental form of value
iteration, which is defined as:

V x R V x() (')α γ←  + (2)

Update (2) represents the learning that occurs after
observing a transition from state x to state x' with
immediate reinforcement of R. The value of the earlier
state, V(x), is modified to be closer to the value of the
expression on the right side, R+ � V(x'), with the rate of
learning controlled by a learning rate � . For this
particular type of MDP, if each V(x) is a separate entry
in a lookup table, then update (2) is also equivalent to
three other reinforcement learning algorithms: TD(0)
(Sutton 88), Q-learning (Watkins 89), and advantage
learning (Baird 95). If an implementation of update
(2) fails to converge in some cases, then all of these
other algorithms also fail to converge in some cases,
and so it is important to find an algorithm that can
solve this simple MDP using general function-
approximation systems.

3 DIRECT ALGORITHMS

If the MDP has a finite number of states, and each V(x)
is represented by a unique entry in a lookup table, and
each possible transition is experienced an infinite
number of times during learning, then update (2) is

guaranteed to converge to the optimal value function as
the learning rate � decays to zero at an appropriate
rate. The various states can be visited in any order
during learning, and some can be visited more often
than others, yet the algorithm will still converge if the
learning rates decay appropriately (Watkins, Dayan
92). If V(x) was represented by a function-
approximation system other than a lookup table, update
(2) could be implemented directly by combining it with
the backpropagation algorithm (Rumelhart, Hinton,
Williams 86). For an input x, the actual output of the
function-approximation system would be V(x), the
“desired output” used for training would be R+ � V(x'),
and all of the weights would be adjusted through
gradient descent to make the actual output closer to the
desired output. For any particular weight w in the
function-approximation system, the weight change
would be:

∆w R V x V x
V x

w
= + −α γ ∂

∂
()(') ()

()
(3)

Equation (3) is exactly the TD(0) algorithm, by
definition. It could also be called the direct
implementation of incremental value iteration, Q-
learning, and advantage learning. The direct
algorithm reduces to the original algorithm when used
with a lookup table. Tesauro (90,92)has shown very
good results by combining TD(0) with backpropagation
(and also using the more general TD(�)). Since it is
guaranteed to converge for the lookup table, this
approach might be expected to also converge for
general function-approximation systems.
Unfortunately, this is not the case, as is illustrated by
the MDP shown in figure 1. In figure 1, there are six
states, and the value of each state is given by the linear
combination of two weights. Every transition yields a
reinforcement of zero. During training, each possible
transition is observed equally often. The function-
approximation system is simply a lookup table, with
one additional entry giving generalization. This is an

Φ =



1 2 0 0 0 0 0
1 0 2 0 0 0 0
1 0 0 2 0 0 0
1 0 0 0 2 0 0
1 0 0 0 0 2 0
2 0 0 0 0 0 1


=



ϕ⊤
1

ϕ⊤
2

ϕ⊤
3

ϕ⊤
4

ϕ⊤
5

ϕ⊤
6


∈ R6×7

w =
[
w0 w1 w2 w3 w4 w5 w6

]⊤
∈ R7.

7

Baird’s Example (Important!)

• We have

V(1) = w0 + 2w1, V(2) = w0 + 2w2, · · · , V(6) = 2w0 + w6

• Let γ = 0.99 and η = 0.1. Suppose w0 = 1 and
w1 = w2, · · · ,w6 = 0. Q-Learning runs:

• state s1: w2 = w1 + η(r+ γV(6)− V(1))ϕ1 =⇒ w0 ↑,w1 ↑, V(6) ↑

∆1 = r+ γV(6)− V(1) = 0.980,w0 = 1.098,w1 = 0.196

• state s2: w3 = w2 + η(r+ γV(6)− V(2))ϕ2 =⇒ w0 ↑,w2 ↑, V(6) ↑

∆2 = r+ γV(6)− V(2) = 1.076,w0 = 1.206,w2 = 0.215

• · · · · · ·
• state s6: w7 = w6 + η(r+ γV(6)− V(6))ϕ6 =⇒ w0 ↓,w6 ↓, V(6) ↓

∆6 = r+ γV(6)− V(6) = −0.032,w0 = 1.590,w6 = −0.003

• Repeating the above cycle, w0 diverges.

8

Remark on Baird’s Example

• Baird’s example suggests that Q-Learning + Function
Approximation may diverge.

• The divergence is not due to step size or to uncertainties about
the environment.
(we numerically observe that diverges happens even though the
step size is very small)

• Divergence is mainly because the extrapolation changes the
“target labels”.

9

Question on Baird’s Example

Question: Can Q-Learning converge if we use the exact solution
rather than taking a gradient step?

Answer: No! (See the next page for Tsitsiklis and Van Roy’s
counter-example)

10

Tsitsiklis and Van Roy’s Example

Divergence of Q-Learning with FA

w 2w

4

Figure 2: Tsitsiklis and Van Roy’s Example [Tsitsiklis and Van Roy, 1997].

(Full-step) Q-learning:

wk+1 = argmin
w∈R

(w− 2γwk)2 + (2w− γ2wk)2 =
6− 4
5 γwk.

The sequence {wk} diverges when γ > 5/6 and w0 ̸= 0.

11

Tsitsiklis and Van Roy’s Example

Divergence of Q-Learning with FA

w 2w

4

Figure 3: Tsitsiklis and Van Roy’s Example [Tsitsiklis and Van Roy, 1997].

(One-step) Q-learning:

w2k+1 = (1+ 2γη − η)w2k,
w2k+2 = (1+ 4γη − 4η)w2k+1.

Key factor: (1+ 2γη − η) · (1+ 4γη − 4η).

When γ is sufficiently large (i.e., γ > 5/6), and step size η is small (i.e.,
0 < η < (5− 6γ)/(8γ2 − 12γ + 4), the sequence {wk} diverges.

12

Remark

• Tsitsiklis and Van Roy’s Example is different from Baird’s
Example because the former is not over-parameterized.

• Tsitsiklis and Van Roy’s Example highlights the off-policy issue:
we should update states according to its stationary distribution.

• In that example, we should update the state “2w” more than the
state “w”.

13

Target Q-Learning

Literature Review

• Previous examples suggest Q-Learning with function
approximation is hard to train.

• However, many deep RL algorithms work in practice. Why?
• Both claims are true but people often ignore (or underestimate)
an important technique used to train deep RL: target network.

Figure 4: NIPS 2013 Workshop. It
solves 6 tasks.

Figure 5: Nature in 2015. It solves 57
tasks.

From NIPS Workshop to Nature: target network is used.

14

Lessons from DQN

Extended Data Table 3 | The effects of replay and separating the target Q-network

DQN agents were trained for 10 million frames using standard hyperparameters for all possible combinations of turning replay on or off, using or not using a separate target Q-network, and three different learning
rates. Each agent was evaluated every 250,000 training frames for 135,000 validation frames and the highest average episode score is reported. Note that these evaluation episodes were not truncated at 5 min
leading to higher scores on Enduro than the ones reported in Extended Data Table 2. Note also that the number of training frames was shorter (10 million frames) as compared to the main results presented in
Extended Data Table 2 (50million frames).

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2015

Figure 6: Ablation study of target Q and experience replay [Mnih et al., 2015].

Experience replay is important; target Q makes it better.

15

Target Network

• Q-Learning:

wt+1 = wt + ηt

[
rt + γ max

a′∈A
⟨ϕ(st+1,a′),wt⟩ − ⟨ϕ(st,at),wt⟩

]
ϕ(st,at).

• Target Q-Learning:

wt+1 = wt + ηt

[
rt + γ max

a′∈A
⟨ϕ(st+1,a′),w⟩ − ⟨ϕ(st,at),wt⟩

]
ϕ(st,at).

where w is the “target parameter”, which is fixed over several
iterations.

• Target Q-Learning updates w periodically with the copy of wt.

16

Target Q-Learning

Let wk−1 be the target parameter in each epoch k.

Algorithm 1 Target Q-Learning
1: for epoch k = 1, 2, · · · , do
2: for iteration t = 1, 2, · · · , T− 1 do
3: wt+1 = wt + ηt[rt + γmaxa′∈A⟨ϕ(st+1,a′),wk−1⟩ −

⟨ϕ(st,at),wt⟩]ϕ(st,at).
4: end for
5: wk = wT.
6: end for

17

Baird’s Example Revisited

• Let γ = 0.99 and η = 0.1. Suppose w0 = 1 and
w1 = w2, · · · ,w6 = 0. For target Q-Learning:

• state s1: w2 = w1 + η(r+ γV(6)− V(1))ϕ1 =⇒ w0 ↑,w1 ↑.

∆1 = r+ γV(6)− V(1) = 0.980,w0 = 1.098,w1 = 0.196

• state s2: w3 = w2 + η(r+ γV(6)− V(2))ϕ2 =⇒ w0 ↑,w2 ↑.

∆2 = r+ γV(6)− V(2) = 0.882,w0 = 1.186,w2 = 0.176

• · · · · · ·
• state s6: w7 = w6 + η(r+ γV(6)− V(6))ϕ6 =⇒ w0 ↓,w6 ↓

∆6 = r+ γV(6)− V(6) = −0.823,w0 = 1.237,w6 = −0.082

• Error does not explode within epoch:

Q-Learning :w0 ↑=⇒ ∆1 < ∆2 < · · · < ∆5

Target Q-Learning :w0 ↑=⇒ ∆1 > ∆2 > · · · > ∆5

18

Setup of Target Q-Learning

To make notations clean, let xs,a denote x(s,a).

• In iteration k, target Q-Learning amounts to solve the following
problem with SGD:

F(w;wk−1) =
∑
(s,a)

(
ϕ⊤
s,aw− ys,a

)2
,

ys,a = Rs,a + γEs′
[
max
a′

ϕ⊤
s′,a′wk−1

]
.

• Randomness is from the index (s,a) and the label ys,a because
the next state s′ is also random.

19

Analysis of Target Q-Learning

⇝ Since minw F(w;wk−1) is an over-determined least square problem,
it must exist a minimizer w⋆

k−1 such that F(w⋆
k−1;wk−1) = 0.

⇝ After T inner iterations, assume in expectation, we have
E[F(wT;wk−1)]− F(w⋆

k−1;wk−1) ≤ εopt for all outer iteration k. This
implies that (wk := wT)

E
[
sup
(s,a)

|ϕ⊤
s,awk − T (wk−1)s,a|

]
≤

√
E[F(wT;wk−1)] ≤

√
εopt.

⇝ Then we have

E
[∥∥wK − w⋆

∥∥
ϕ

]
:= E

[
sup
(s,a)

|ϕ⊤
s,awK − ϕ⊤

s,aw⋆|
]

≤ E
[
sup
(s,a)

∣∣ϕ⊤
s,awK − T (wK−1)s,a

∣∣+ sup
(s,a)

∣∣T (wK−1)s,a − ϕ⊤
s,aw⋆

∣∣]
≤ √

εopt + γE
[∥∥wK−1 − w⋆

∥∥
ϕ

]
≤ · · · · · ·

≤
√
εopt

1− γ
+ γK

∥∥w0 − w⋆
∥∥
ϕ
.

20

Remark on Target Q-Learning

• For target Q-Learning, if we can control εopt, the convergence
with linear function approximation is guaranteed.

• Target Q-Learning does not contradict with Tsitsiklis and Van
Roy’s Example because the latter is not in the
over-parameterization regime.

• We need additional effort to analyze εopt, which depends on
wk−1 when we try to upper bound the variance of SGD update.

• Typical SGD analysis assume the variance is upper bound by a
constant.

• For target Q-Learning, we solve multiple least square problems,
where the variance changes over different problems.

21

References i

References

L. C. B. III. Residual algorithms: Reinforcement learning with function
approximation. In Proceedings of the 12th International Conference
on Machine Learning, pages 30–37, 1995.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al.
Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference
learning with function approximation. IEEE transactions on
automatic control, 42(5):674–690, 1997.

22

	Introduction
	Divergence of Q-Learning with Function Approximation
	Baird's Example
	Tsitsiklis and Van Roy’s Example

	Target Q-Learning
	Analysis of Target Q-Learning

	References

