Convergence Issues of Q-Learning with Function Approximation

Ziniu Li

The Chinese University of Hong Kong, Shenzhen

Table of contents

- 1. Introduction
- 2. Divergence of Q-Learning with Function Approximation
- 3. Target Q-Learning

Overview

 We use simple examples to illustrate the divergence issues of Q-Learning with function approximation.

 We introduce the practical technique to address this issue: target network.

We discuss why this technique can work.

Introduction

Markov Decision Processes

- Infinite-horizon MDPs with time-independent dynamics $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \gamma, P, R)$.
- Bellman Optimality Equation:

$$Q^{*}(s,a) = R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a' \in \mathcal{A}} Q^{*}(s',a') \right], \quad \forall (s,a) \in \mathcal{S} \times \mathcal{A}.$$

• Bellman operator \mathcal{T} :

$$\mathcal{T}(Q)(s,a) = R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} Q(s',a') \right].$$

However, in practice, we do not know P so that \mathcal{T} is not applicable.

• γ -contractility:

$$\max_{(s,a)} |\mathcal{T}(Q_1)(s,a) - \mathcal{T}(Q_2)(s,a)| \le \gamma \max_{(s,a)} |Q_1(s,a) - Q_2(s,a)|.$$

3

Q-Learning

Assume we have access to the stream data (s_t, a_t, r_t, s_{t+1}) .

· Q-learning:

$$Q_{t+1}(s_t, a_t) = Q_t(s_t, a_t) + \eta_t \left[r_t + \gamma \max_{a' \in \mathcal{A}} Q_t(s_{t+1}, a') - Q_t(s_t, a_t) \right].$$

• If we try to linearly parameterize Q(s,a) over the feature ϕ . That is, $Q_t(s_t,a_t) = \phi(s_t,a_t)^\top w$. Then, Q-learning becomes:

$$w_{t+1} = w_t + \eta_t \left[r_t + \gamma \max_{a' \in \mathcal{A}} \langle \phi(s_{t+1}, a'), w_t \rangle - \langle \phi(s_t, a_t), w_t \rangle \right] \phi(s_t, a_t).$$

4

Open Problem

Question: Does Q-Learning converge with any (linear) function approximation?

Answer: No! (See the next page for the counter-example.)

Divergence of Q-Learning with

Function Approximation

Baird's Example

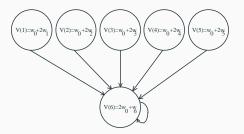
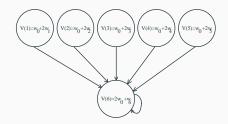


Figure 1: Baird's example [III, 1995].

- $\boldsymbol{\cdot}$ Only one action at each state and reward is 0.
- Q(s, a) = V(s) under this case.

Baird's Example



$$\Phi = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 2 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \phi_1^\mathsf{T} \\ \phi_2^\mathsf{T} \\ \phi_3^\mathsf{T} \\ \phi_4^\mathsf{T} \\ \phi_5^\mathsf{T} \\ \phi_6^\mathsf{T} \end{bmatrix} \in \mathbb{R}^{6 \times 7}$$

$$W = \begin{bmatrix} w^0 & w^1 & w^2 & w^3 & w^4 & w^5 & w^6 \end{bmatrix}^\mathsf{T} \in \mathbb{R}^7.$$

7

Baird's Example (Important!)

We have

$$V(1) = w^0 + 2w^1, V(2) = w^0 + 2w^2, \dots, V(6) = 2w^0 + w^6$$

• Let $\gamma=0.99$ and $\eta=0.1$. Suppose $w^0=1$ and $w^1=w^2,\cdots,w^6=0$. Q-Learning runs:

• state
$$s_1$$
: $w_2 = w_1 + \eta(r + \gamma V(6) - V(1))\phi_1 \Longrightarrow w^0 \uparrow, w^1 \uparrow, V(6) \uparrow$

$$\Delta_1 = r + \gamma V(6) - V(1) = 0.980, w^0 = 1.098, w^1 = 0.196$$

• state
$$s_2$$
: $W_3 = W_2 + \eta(r + \gamma V(6) - V(2))\phi_2 \Longrightarrow W^0 \uparrow, W^2 \uparrow, V(6) \uparrow$

$$\Delta_2 = r + \gamma V(6) - V(2) = 1.076, w^0 = 1.206, w^2 = 0.215$$

.

• state
$$s_6$$
: $w_7 = w_6 + \eta(r + \gamma V(6) - V(6))\phi_6 \Longrightarrow w^0 \downarrow, w^6 \downarrow, V(6) \downarrow$

$$\Delta_6 = r + \gamma V(6) - V(6) = -0.032, w^0 = 1.590, w^6 = -0.003$$

• Repeating the above cycle, w^0 diverges.

Remark on Baird's Example

 Baird's example suggests that Q-Learning + Function Approximation may diverge.

- The divergence is not due to step size or to uncertainties about the environment.
 (we numerically observe that diverges happens even though the step size is very small)
- Divergence is mainly because the extrapolation changes the "target labels".

Question on Baird's Example

Question: Can Q-Learning converge if we use the **exact** solution rather than taking a gradient step?

Answer: No! (See the next page for Tsitsiklis and Van Roy's counter-example)

Tsitsiklis and Van Roy's Example

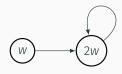


Figure 2: Tsitsiklis and Van Roy's Example [Tsitsiklis and Van Roy, 1997]. (Full-step) Q-learning:

$$W_{k+1} = \operatorname*{argmin}_{W \in \mathbb{R}} (W - 2\gamma W_k)^2 + (2W - \gamma 2W_k)^2 = \frac{6-4}{5} \gamma W_k.$$

The sequence $\{w_k\}$ diverges when $\gamma > 5/6$ and $w_0 \neq 0$.

Tsitsiklis and Van Roy's Example

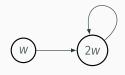


Figure 3: Tsitsiklis and Van Roy's Example [Tsitsiklis and Van Roy, 1997]. (One-step) Q-learning:

$$\begin{split} w_{2k+1} &= (1 + 2\gamma \eta - \eta) w_{2k}, \\ w_{2k+2} &= (1 + 4\gamma \eta - 4\eta) w_{2k+1}. \end{split}$$

Key factor: $(1 + 2\gamma \eta - \eta) \cdot (1 + 4\gamma \eta - 4\eta)$.

When γ is sufficiently large (i.e., $\gamma > 5/6$), and step size η is small (i.e., $0 < \eta < (5 - 6\gamma)/(8\gamma^2 - 12\gamma + 4)$, the sequence $\{w_k\}$ diverges.

Remark

• Tsitsiklis and Van Roy's Example is different from Baird's Example because the former is **not** over-parameterized.

- Tsitsiklis and Van Roy's Example highlights the off-policy issue: we should update states according to its stationary distribution.
 - In that example, we should update the state "2w" more than the state "w".

Target Q-Learning

Literature Review

- Previous examples suggest Q-Learning with function approximation is hard to train.
- · However, many deep RL algorithms work in practice. Why?
- Both claims are true but people often ignore (or underestimate) an important technique used to train deep RL: target network.

Playing atari with deep reinforcement learning

V.Mnih, K.Kavukcuoglu, D.Silver, A.Graves... - arXiv preprint arXiv ..., 2013 - arxiv.org
We present the first deep learning model to successfully learn control policies directly from
high-dimensional sensory input using reinforcement learning. The model is a convolutional ...

☆ 99 被引用次数: 7325 相关文章 所有34个版本 ≫

Figure 4: NIPS 2013 Workshop. It solves 6 tasks

Human-level control through deep reinforcement learning

V.Mnin, K.Kawakozoulu, D.Siher, A.A.Rusu, J.Vaness... - nature, 2015 - nature.com

The Beery of reinforcement learning provises a normative account 1, deeply rooted in psychological 2 and neuroscientific 3 perspectives on animal behaviour, of how agents may ...

2* 09 **8(IRINSE 16938** MEX-SE*** MEX-SE****) # ASS **PAS*** PAS*** PAS****

3* PAS** PAS*****

4* PAS**

4* PAS**

5* PAS*

5* PAS

5* PAS*

5* PAS*

5* PAS*

5* PAS*

5* PAS

5* PAS*

5* PAS

*

Figure 5: Nature in 2015. It solves 57 tasks

From NIPS Workshop to Nature: target network is used.

Lessons from DQN

Game	With replay, with target Q	With replay, without target Q	Without replay, with target Q	Without replay, without target Q
Breakout	316.8	240.7	10.2	3.2
Enduro	1006.3	831.4	141.9	29.1
River Raid	7446.6	4102.8	2867.7	1453.0
Seaquest	2894.4	822.6	1003.0	275.8
Space Invaders	1088.9	826.3	373.2	302.0

Figure 6: Ablation study of target Q and experience replay [Mnih et al., 2015].

Experience replay is important; target Q makes it better.

Target Network

· Q-Learning:

$$W_{t+1} = W_t + \eta_t \left[r_t + \gamma \max_{a' \in \mathcal{A}} \langle \phi(s_{t+1}, a'), W_t \rangle - \langle \phi(s_t, a_t), W_t \rangle \right] \phi(s_t, a_t).$$

· Target Q-Learning:

$$W_{t+1} = W_t + \eta_t \left[r_t + \gamma \max_{a' \in \mathcal{A}} \langle \phi(s_{t+1}, a'), \overline{W} \rangle - \langle \phi(s_t, a_t), W_t \rangle \right] \phi(s_t, a_t).$$

where \overline{w} is the "target parameter", which is fixed over several iterations.

• Target Q-Learning updates \overline{w} periodically with the copy of w_t .

Target Q-Learning

Let w^{k-1} be the target parameter in each epoch k.

Algorithm 1 Target Q-Learning

```
1: for epoch k=1,2,\cdots, do

2: for iteration t=1,2,\cdots,T-1 do

3: W_{t+1}=W_t+\eta_t[r_t+\gamma\max_{a'\in\mathcal{A}}\langle\phi(s_{t+1},a'),w^{k-1}\rangle-\langle\phi(s_t,a_t),w_t\rangle]\phi(s_t,a_t).

4: end for

5: W^k=W_T.

6: end for
```

Baird's Example Revisited

• Let
$$\gamma = 0.99$$
 and $\eta = 0.1$. Suppose $w^0 = 1$ and $w^1 = w^2, \cdots, w^6 = 0$. For target Q-Learning:
• state $s_1: w_2 = w_1 + \eta(r + \gamma \overline{V}(6) - V(1))\phi_1 \Longrightarrow w^0 \uparrow, w^1 \uparrow$.

$$\Delta_1 = r + \gamma \overline{V}(6) - V(1) = 0.980, w^0 = 1.098, w^1 = 0.196$$
• state $s_2: w_3 = w_2 + \eta(r + \gamma \overline{V}(6) - V(2))\phi_2 \Longrightarrow w^0 \uparrow, w^2 \uparrow$.

$$\Delta_2 = r + \gamma \overline{V}(6) - V(2) = 0.882, w^0 = 1.186, w^2 = 0.176$$
•
• state $s_6: w_7 = w_6 + \eta(r + \gamma \overline{V}(6) - V(6))\phi_6 \Longrightarrow w^0 \downarrow, w^6 \downarrow$

$$\Delta_6 = r + \gamma \overline{V}(6) - V(6) = -0.823, w^0 = 1.237, w^6 = -0.082$$

· Error does not explode within epoch:

$$\text{Q-Learning}: \hspace{-0.1cm} w_0 \uparrow \Longrightarrow \Delta_1 < \Delta_2 < \cdots < \Delta_5$$
 Target Q-Learning: $\hspace{-0.1cm} w_0 \uparrow \Longrightarrow \Delta_1 > \Delta_2 > \cdots > \Delta_5$

Setup of Target Q-Learning

To make notations clean, let $x_{s,a}$ denote x(s,a).

• In iteration *k*, target Q-Learning amounts to solve the following problem with SGD:

$$F(w; w^{k-1}) = \sum_{(s,a)} (\phi_{s,a}^{\top} w - y_{s,a})^{2},$$

$$y_{s,a} = R_{s,a} + \gamma \mathbb{E}_{s'} \left[\max_{a'} \phi_{s',a'}^{\top} w^{k-1} \right].$$

• Randomness is from the index (s, a) and the label $y_{s,a}$ because the next state s' is also random.

Analysis of Target Q-Learning

 \leadsto Since $\min_{w} F(w; w^{k-1})$ is an over-determined least square problem, it must exist a minimizer w_{k-1}^* such that $F(w_{k-1}^*; w^{k-1}) = 0$.

 \leadsto After T inner iterations, assume in expectation, we have $\mathbb{E}[F(w_T; w^{k-1})] - F(w_{k-1}^\star; w^{k-1}) \le \varepsilon_{\mathrm{opt}}$ for all outer iteration k. This implies that $(w^k := w_T)$

$$\mathbb{E}\big[\sup_{(s,a)}|\phi_{s,a}^\top w^k - \mathcal{T}(w^{k-1})_{s,a}|\big] \leq \sqrt{\mathbb{E}[F(w_T;w^{k-1})]} \leq \sqrt{\varepsilon_{\mathrm{opt}}}.$$

→ Then we have

$$\begin{split} \mathbb{E}\left[\left\|\boldsymbol{w}^{K}-\boldsymbol{w}^{\star}\right\|_{\phi}\right] &:= \mathbb{E}\left[\sup_{(s,a)}|\phi_{s,a}^{\top}\boldsymbol{w}^{K}-\phi_{s,a}^{\top}\boldsymbol{w}^{\star}|\right] \\ &\leq \mathbb{E}\left[\sup_{(s,a)}|\phi_{s,a}^{\top}\boldsymbol{w}^{K}-\mathcal{T}(\boldsymbol{w}_{K-1})_{s,a}| + \sup_{(s,a)}|\mathcal{T}(\boldsymbol{w}_{K-1})_{s,a}-\phi_{s,a}^{\top}\boldsymbol{w}^{\star}|\right] \\ &\leq \sqrt{\varepsilon_{\mathrm{opt}}} + \gamma \mathbb{E}\left[\left\|\boldsymbol{w}^{K-1}-\boldsymbol{w}^{\star}\right\|_{\phi}\right] \leq \cdots \\ &\leq \frac{\sqrt{\varepsilon_{\mathrm{opt}}}}{1-\gamma} + \gamma^{K}\left\|\boldsymbol{w}^{0}-\boldsymbol{w}^{\star}\right\|_{\phi}. \end{split}$$

Remark on Target Q-Learning

- For target Q-Learning, if we can control $\varepsilon_{\mathrm{opt}}$, the convergence with linear function approximation is guaranteed.
- Target Q-Learning does not contradict with Tsitsiklis and Van Roy's Example because the latter is not in the over-parameterization regime.
- We need additional effort to analyze $\varepsilon_{\mathrm{opt}}$, which depends on w^{k-1} when we try to upper bound the variance of SGD update.
 - Typical SGD analysis assume the variance is upper bound by a constant.
 - For target Q-Learning, we solve multiple least square problems, where the variance changes over different problems.

References i

References

- L. C. B. III. Residual algorithms: Reinforcement learning with function approximation. In *Proceedings of the 12th International Conference on Machine Learning*, pages 30–37, 1995.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.
- J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approximation. *IEEE transactions on automatic control*, 42(5):674–690, 1997.