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Thompson Sampling in Online Decision Making

▶ Thompson sampling (TS) is an effective heuristic for trading off between exploration and

exploitation in online decision making problems

– bandit: MAB, linear bandit, contextual bandit

– RL

▶ Mechanism

– Maintain a posterior distribution of models (initialized with a prior)

– Sample models from the posterior distribution as statistically plausible models

– Choose greedy/optimal action w.r.t. the statistically plausible models

▶ Limitations

– Requires conjugacy properties, e.g. Beta/Bernoulli, Gaussian/Gaussian

– Difficult to apply to complex models like neural net
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From Thompson Sampling to Ensemble Sampling

▶ Approximate TS algorithms

– Laplace approximation: limited to unimodal distribution

– MCMC: computationally expensive for complex models

– Ensemble sampling (ES)

– Hypermodel: generalization/variation of ES

▶ ES as a practical approximation to TS

– Fast incremental update/low computational cost

– Applicable to neural net

▶ Applications of variations of ES

– DRL [Osband et al., 2016, 2018, 2019]

– Online recommendation [Lu et al., 2018, Hao et al., 2020, Zhu and Van Roy, 2021]

– MARL [Dimakopoulou and Van Roy, 2018]
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Main contributions

▶ No rigorous theory of ES

▶ Lu and Van Roy [2017] provided the first regret bound of ES applied to the linear bandit,

with a flaw in the analysis

▶ Contributions

– The first rigorous regret analysis of ES for the linear bandit

– A general Bayesian regret bound for any algorithm for the linear bandit
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Linear Gaussian Bandit

▶ Reward at time t and is linear in action a with Gaussian noise

Rt,a = a⊤θ +Wt,a

– a ∈ A ⊂ Rd with K = |A|
– θ ∈ Rd is the model parameter

– Wt is an i.i.d. sequence with Wt ∼ N
(
0, σ2IK

)
▶ Bayesian framework

θ ∼ P1(θ ∈ ·) = N(µ0,Σ0)

▶ At each time t, the agent chooses At and only observes Rt,At

▶ Bandit/partial feedback: Rt,a for a ̸= At not revealed
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Bayesian Regret

▶ History at time t

Ht =
(
A1, R1,A1

, . . . , At−1, Rt−1,At−1

)
.

▶ Given a model θ, the optimal action

A∗ := argmax
a∈A

E [Rt,a|θ] = argmax
a∈A

a⊤θ

▶ Frequentist regret

Regret(T, θ) :=

T∑
t=1

E [Rt,A∗ −Rt,At
|θ]

=

T∑
t=1

E
[
A⊤

∗ θ −A⊤
t θ|θ

]
.

▶ Bayesian regret

Regret(T ) := Eθ∼P1
[Regret(T, θ)].
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Ensemble Sampling

▶ Without conjugacy properties, exact TS becomes computationally infeasible

▶ ES serves as a practical approximation to TS

Algorithm 1 Thompson Sampling

1: for t ∈ [T ] do
2: Sample θ̃t ∼ P(θ ∈ ·|Ht)
3: Execute At ∼ argmax

a∈A
a⊤θ̃t

4: Observe Rt,At

5: Update P(θ ∈ ·|Ht) −→ P(θ ∈
·|Ht+1)

Algorithm 2 Ensemble Sampling

1: Sample: θ̃1,1, . . . , θ̃1,M ∼ P1(θ ∈ ·)
2: for t ∈ [T ] do
3: Sample m ∼ unif{1, . . . ,M}
4: Execute At ∼ argmax

a∈A
a⊤θ̃t,m

5: Observe Rt,At

6: Update θ̃t,1:M −→ θ̃t+1,1:M
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Update Details

▶ The posterior distribution at time t+ 1 is still Gaussian

Σt+1 =

(
Σ−1

t +
1

σ2
AtA

⊤
t

)−1

and µt+1 = Σt+1

(
Σ−1

t µt +
Rt,At

σ2
At

)
▶ Satisfies conjugacy properties though

▶ ES updates each m-th model according to

θ̃t+1,m = Σt+1

(
Σ−1

t θ̃t,m +
Rt,At

+ W̃t,m

σ2
At

)
,

where each W̃t =
(
W̃t,1, . . . , W̃t,M

)
∼ N

(
0, σ2IM

)
is an independent random

perturbation.
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Regret Bound

▶ Regret bound for ES

▶ General regret bound for any algorithms

▶ From general regret to regret bound for ES
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Regret Bound for ES

Theorem 1.

Algorithm 2 for linear bandit with prior N (µ0,Σ0) and M models satisfies

Regret(T ) ⩽ ι
√

dTH (A∗)︸ ︷︷ ︸
(a)

+κT

√
K log(6TM)

M︸ ︷︷ ︸
(b)

= Õ
(√

dTH (A∗) + T
√

K/M
)
,

where H (A∗) is the entropy of the optimal action A∗ under the prior, and

ι :=

√
2

(
max
a∈A

a⊤Σ0a+ σ2

)
and

κ := 2

√
(4 logK + 5)max

a∈A
a⊤Σ0a+max

a∈A
(a⊤µ0)

2
+ σ2 = Õ(

√
logK).
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Comparison with the regret bound on TS

The regret bound for ES

Regret(T ) ⩽ Õ

√dTH (A∗)︸ ︷︷ ︸
(a)

+T
√
K/M︸ ︷︷ ︸
(b)


▶ Term (a) is exactly the regret bound achieved by TS [Russo and Van Roy, 2016]

▶ Term (b) accounts for posterior distribution mismatch

▶ As M → ∞, term (b) converges to 0, and the regret bound reduces to that of TS

▶ When M is finite and satisfies M = Ω(KT/d), the regret bound matches TS
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Notations

▶ For two discrete distributions P = (p1, . . . , pn) and Q = (q1, . . . , qn), the KL divergence

and Hellinger distance between P and Q are defined as

dKL(P∥Q) :=
∑
i∈[n]

pi log (pi/qi) and dH(P∥Q) :=

√∑
i∈[n]

(
√
pi −

√
qi)

2

▶ They satisfy

d2
H(P∥Q) ⩽ min {dKL(P∥Q),dKL(Q∥P )}
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Notations

▶ The Shannon entropy of X

H(X) := −
∑
x∈X

P(X = x) logP(X = x)

▶ The entropy of X conditional on Y = y

H(X | Y = y) := −
∑
x∈X

P(X = x | Y = y) logP(X = x | Y = y)

▶ The conditional entropy of X given Y

H(X | Y ) := EY

[
−
∑
x∈X

P(X = x | Y ) logP(X = x | Y )

]
▶ The mutual information between X and Y

I(X;Y ) := dKL(P (X,Y )∥P (X)P (Y ))

▶ The conditional mutual information between X and Y given Z

I(X;Y | Z) := EZ [dKL(P (X,Y | Z)∥P (X | Z)P (X | Z))]
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General Regret Bound

▶ Derive a general Bayesian regret bound for any learning algorithm

▶ It is of independent interest and might be used to analyze other bandit algorithms

▶ Use subscript t to denote conditioning on Ht,

Pt(·) := P (· | Ht) and Et[·] := E [· | Ht]

▶ Define

p̄t(·) := Pt (At = ·) and pt(·) := Pt (A∗ = ·)

▶ Both p̄t and pt are specified by the algorithm

– Under TS, p̄t = pt

– For approximate TS, p̄t ≈ pt
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General Regret Bound

Theorem 2.

Any learning algorithm for linear bandit satisfies

Regret(T ) ⩽ ι
√
dTH (A∗) + η

T∑
t=1

√
E [d2

H (p̄t∥pt)],

where

η := 2

√
E
[
max
a∈A

(a⊤θ)
2

]
+ σ2.

Note that the expectation is taken w.r.t. the prior over θ.
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Discussion on the General Regret Bound

▶ The first term matches TS

▶ The second term quantifies the cumulative difference between p̄t and pt

▶ d2
H (p̄t∥pt)
– vanishes for TS

– should be small for well approximated TS

▶ η = 2

√
E
[
maxa∈A (a⊤θ)

2
]
+ σ2 depends on the prior. For Gaussian prior,

– a⊤θ is Gaussian r.v. for any a ∈ A
– the expectation of the maximum of K squares of Gaussian r.v.s is O(logK)

▶ Indeed, η ≤ κ = 2

√
(4 logK + 5)maxa∈A a⊤Σ0a+maxa∈A (a⊤µ0)

2
+ σ2
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Regret Bound in terms of KL divergence

▶ Analyzing the KL divergence are sometimes easier

▶ Recall

d2
H(P∥Q) ⩽ min {dKL(P∥Q),dKL(Q∥P )}

Corollary 3.

Under then setting of Theorem 2,

Regret(T ) ⩽ ι
√
dTH (A∗) + η

T∑
t=1

√
E [min {dKL (p̄t∥pt) ,dKL (pt∥p̄t)}]

▶ Will show that for ES, dKL (p̄t∥pt) can be bounded in terms of M
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Proof Sketch of Theorem 2

▶ Step 1: rewrite cumulative regret

Regret(T ) =

T∑
t=1

E [Et [Rt+1,A∗ −Rt+1,At ]]

▶ Step 2: regret decomposition as sum of “main regret” and “approximation error”,

Et [Rt,A∗ −Rt+1,At ] = Gt +Dt

where

Gt ≜
∑
a∈A

√
p̄t(a)pt(a) (Et [Rt,a | A∗ = a]− Et [Rt+,a])

and

Dt ≜
∑
a∈A

(√
pt(a)−

√
p̄t(a)

)(√
pt(a)Et [Rt,a | A∗ = a] +

√
p̄t(a)Et [Rt,a]

)
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Proof Sketch of Theorem 2

▶ Step 3: Bound
∑T

t=1 E [Gt]

Gt ⩽ ι
√

d · It (A∗; (At, Rt,At)) (information-theoretic)

=⇒
T∑

t=1

E [Gt] ⩽ ι
√
dTH (A∗) (Cauchy-Schwartz inequality + chain rule)

▶ Step 4: Bound
∑T

t=1 E [Gt]

E [Dt] ⩽ η
√

E [d2
H (p̄t∥pt)] (Cauchy-Schwartz inequality)
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Bound
∑T

t=1

√
E [d2

H (p̄t∥pt)]

Lemma 4.

Under ES, for all t ∈ [T ],

E [dKL (p̄t∥pt)] ⩽
K log(6(t+ 1)M)

M
.

▶ Plugging Lemma 4 into the general regret bound in Theorem 2, we achieve the regret

bound for ES in Theorem 1
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Proof of Lemma 4

▶ ES first uniformly samples m ∈ [M ], and then samples the action At corresponding to θ̃t,m

uniformly from the optimal action set

Ãt,m := argmax
a∈A

a⊤θ̃t,m

▶ Define the following approximation of pt(a)

p̂t(a) :=
1

M

M∑
m=1

1∣∣∣Ãt,m

∣∣∣ I
{
a ∈ Ãt,m

}
▶ History Ht does not include W̃t, and

θ̃t,m = Σt

(
Σ−1

t−1θ̃t−1,m +
Rt,At

+ W̃t,m

σ2
At

)
▶ Given Ht, p̂t(a) is still random

p̄t(a) = Et [p̂t(a)]
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Proof of Lemma 4

▶ By convexity of KL divergence, the per-period approximation error

dKL (p̄t∥pt) = dKL (Et [p̂t] ∥pt) ⩽ Et [dKL (p̂t∥pt)]
▶ Taking expectation on both sides

E [dKL (p̄t∥pt)] ⩽ E [dKL (p̂t∥pt)]
▶

E [dKL (p̂t∥pt)] =
∫ ∞

0

P (dKL (p̂t∥pt) > ϵ) dϵ

▶ Derive an upper bound on P (dKL (p̂t∥pt) > ϵ) for any ϵ > 0
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Proof of Lemma 4

▶ For simplicity, consider deterministic action sequence a1:t := (a1, ..., at). Write

p
a1:t−1

t (·) := Pt

(
A∗ = · | a1, R1,a1

, . . . , at−1, Rt,at−1

)
▶ Under deterministic action sequence a1:t

θ̃
a0:t−1

t,1 , . . . , θ̃
a0:t−1

t,M |R1,a1
, . . . , Rt,at−1

∼ Pt(θ ∈ ·)
▶ p̂

a0:t−1

t is an empirical distribution for p
a0:t−1

t

Fact 5 (Sanov’s theorem).
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Relate to stochastic action sequence

▶ Using Sanov’s theorem

P
(
dKL

(
p̂
a0:t−1

t ∥pa0:t−1

t

)
> ϵ | θ

)
⩽ (M + 1)Ke−Mϵ

▶ By applying the union bound over action counts, instead of action sequences

P
(

max
a0:t−1∈At

dKL

(
p̂
a0:t−1

t ∥pa0:t−1

t

)
> ϵ | θ

)
⩽ (t+ 1)K(M + 1)Ke−Mϵ

▶ Relate to the KL divergence associated with stochastic action sequence

P (dKL (p̂t∥pt) > ϵ | θ) ⩽ P
(

max
a0:t−1∈At

dKL

(
p̂
a0:t−1

t ∥pa0:t−1

t

)
> ϵ | θ

)
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Proof

▶ Fix t. For any ϵ > 0,

P (dKL (p̂t∥pt) > ϵ) = E[P (dKL (p̂t∥pt) > ϵ|θ) |θ] ⩽ (t+ 1)K(M + 1)Ke−Mϵ.

▶ For any threshold δ ⩾ 0,

E [dKL (p̂t∥pt)] =
∫ ∞

0

P (dKL (p̂t∥pt) > ϵ) dϵ

⩽ δ + (t+ 1)K(M + 1)K
∫ ∞

δ

e−Mϵdϵ

= δ +
(t+ 1)K(M + 1)Ke−Mδ

M

▶ Choosing the optimal δ∗ = K[log(t+1)+log(M+1)]
M

E [dKL (p̂t∥pt)] ⩽
K[log(t+ 1) + log(M + 1)] + 1

M
⩽

K log(6(t+ 1)M)

M
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