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Thompson Sampling in Online Decision Making

» Thompson sampling (TS) is an effective heuristic for trading off between exploration and
exploitation in online decision making problems

— bandit: MAB, linear bandit, contextual bandit
- RL

» Mechanism

— Maintain a posterior distribution of models (initialized with a prior)
— Sample models from the posterior distribution as statistically plausible models

— Choose greedy/optimal action w.r.t. the statistically plausible models
» Limitations

— Requires conjugacy properties, e.g. Beta/Bernoulli, Gaussian/Gaussian

— Difficult to apply to complex models like neural net
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From Thompson Sampling to Ensemble Sampling

» Approximate TS algorithms
— Laplace approximation: limited to unimodal distribution
— MCMC: computationally expensive for complex models
— Ensemble sampling (ES)
— Hypermodel: generalization/variation of ES

» ES as a practical approximation to TS
— Fast incremental update/low computational cost
— Applicable to neural net

» Applications of variations of ES
— DRL [Osband et al., 2016, 2018, 2019]
— Online recommendation [Lu et al., 2018, Hao et al., 2020, Zhu and Van Roy, 2021]
— MARL [Dimakopoulou and Van Roy, 2018]
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Main contributions

> No rigorous theory of ES
» Lu and Van Roy [2017] provided the first regret bound of ES applied to the linear bandit,
with a flaw in the analysis

» Contributions

— The first rigorous regret analysis of ES for the linear bandit
— A general Bayesian regret bound for any algorithm for the linear bandit
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Linear Gaussian Bandit

» Reward at time ¢ and is linear in action a with Gaussian noise

Rt,a = aTQ + Wt,a

- a€ ACR? with K = | 4]
— 0 € R is the model parameter
— Wy is an i.i.d. sequence with W; ~ N (0,07 Ik)

> Bayesian framework
0~ ]P’l(ﬁ S ) = N(,uo,zo)

> At each time ¢, the agent chooses A; and only observes R; 4,

» Bandit/partial feedback: R;, for a # A; not revealed
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Bayesian Regret

» History at time t
Ht = (A17 Rl,Ala ey At717 Rtfl,Atfl) .
» Given a model 6, the optimal action
A, := aremaxE[R; ,|0] = argmaxa' 0
gaeA [ t’a| ] gaeA

» Frequentist regret

[M]=

Regret(T,0) := » E[R;a, — Rs 4,]0]

~
Il

1

[M]=

E[Al60—Al00].

t=1

» Bayesian regret
Regret(T) := Eg.p, [Regret(T, 0)].
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Ensemble Sampling

» Without conjugacy properties, exact TS becomes computationally infeasible

> ES serves as a practical approximation to TS

Algorithm 1 Thompson Sampling Algorithm 2 Ensemble Sampling
1: for t € [T] do 1: Sample: 51,1, .. .,él’M ~Pi(0€-)
2: Sample ; ~P( € -|H;) 2: for t € [T] do
3: Execute A, ~ argmax a ' 6, 3: Sample m ~ unif{1,..., M}
acA . ~ T)
" Observe Ry 4, 4: Execute A; argeriax a' O m
5: Update P(0 € -|H,) — P(0 € 5: Observe R; 4,
|Hit1) 6: Update 6; 1.0 — 01,10
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Update Details

» The posterior distribution at time ¢ 4 1 is still Gaussian
-1
_ 1 - Ry A
Yip1 = (Et t 4 UQAtAtT> and  pie1 =Yg <Et e + ;étAt>
> Satisfies conjugacy properties though
» ES updates each m-th model according to

j —1g R t + ﬁ//.'m
Ort1m = Xiga <Zt 64 m + t’A'f'At> )

o2

where each Wt = (Wt,1, ce WtyM) ~N (0,02IM) is an independent random
perturbation.
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Regret Bound

» Regret bound for ES
» General regret bound for any algorithms

» From general regret to regret bound for ES
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Regret Bound for ES

Theorem 1.

Algorithm 2 for linear bandit with prior N (uo,0) and M models satisfies

Regret(T) < t\/dTH (A,) + kT K log(6TM)
—— M
(@) %
=0 (\/dTH (A) + T\/K/M) :

where H (A.) is the entropy of the optimal action A, under the prior, and

L= \/2 (max alYoa + 02)
acA

K= 2\/(410gK +5) meaj(a—'—an + max (aT o)’ + 02 = O(y/log K).
a a

and
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Comparison with the regret bound on TS

The regret bound for ES

Regret(T \/ dTH (Ay) + T\/K/

(a) (b)

» Term (a) is exactly the regret bound achieved by TS [Russo and Van Roy, 2016]
» Term (b) accounts for posterior distribution mismatch

» As M — oo, term (b) converges to 0, and the regret bound reduces to that of TS
» When M is finite and satisfies M = Q(KT/d), the regret bound matches TS
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Notations

» For two discrete distributions P = (p1,...,p,) and @ = (q1, ..., ¢n), the KL divergence
and Hellinger distance between P and @ are defined as

dL(PlQ) == " pilog (pi/a)) and  du(P|Q):= [> (Vpi — V&)

i€[n] i€[n]

» They satisfy
df (P||Q) < min {dkr.(P||Q), dki(Q[ P)}
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Notations

» The Shannon entropy of X

Y P(X =2)log P(X = 1)

zeX
» The entropy of X conditionalon Y =y
HX|Y =y)i==) P(X=2|Y =y)logP(X =2 |Y =y)
rzeX

» The conditional entropy of X given Y

H(X |Y):=Ey |- Y P(X=2|Y)logP(X =2|Y)
xEX
» The mutual information between X and Y

I(X;Y) := dkw(P(X, Y) [ P(X)P(Y))
» The conditional mutual information between X and Y given Z
I(X;Y | 2) :=Ez [dgo(P(X,Y | 2)|P(X | Z)P(X | Z))]
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General Regret Bound

» Derive a general Bayesian regret bound for any learning algorithm

v

It is of independent interest and might be used to analyze other bandit algorithms
» Use subscript ¢ to denote conditioning on Hy,
P,():=P(-| H) and EJ]:=E[ | Hy
» Define
pi() =P (A=) and p(c) =P (A, =)

» Both p; and p; are specified by the algorithm

— Under TS, ﬁt = Pt
— For approximate TS, p: ~ p:
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General Regret Bound

Theorem 2.

Any learning algorithm for linear bandit satisfies

Regret(T) < t\/dTH (A,) + 772 E [df (pellpe)],
t=1

where

— T9)2 2
n = 2\/E [I;lea;‘((a 0) } + o2

Note that the expectation is taken w.r.t. the prior over 0.
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Discussion on the General Regret Bound

» The first term matches TS

\4

The second term quantifies the cumulative difference between p; and p;

v

df; (pellpe)
— vanishes for TS
— should be small for well approximated TS

> = 2\/]E {maxaeA (aTG)Z} + 02 depends on the prior. For Gaussian prior,

— a'0 is Gaussian r.v. for any a € A

— the expectation of the maximum of K squares of Gaussian r.v.s is O(log K)

» Indeed, n < Kk = 2\/(4 log K + 5) maxge 4 a' Loa + maxgeq (aT o)’ + 02
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Regret Bound in terms of KL divergence

» Analyzing the KL divergence are sometimes easier
> Recall
df;(P||Q) < min {dkr(P||Q), dxi(Q|IP)}

Corollary 3.
Under then setting of Theorem 2,

Regret(T) < t\/dTH (A,) + 17 Z VE [min {dkr (5¢||p:) , dxr. (pe]|pe)}]
=1

» Will show that for ES, dkr, (Pt||p:) can be bounded in terms of M
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Proof Sketch of Theorem 2

» Step 1: rewrite cumulative regret

T
Regret(T) = Y E[E; [Ris1,4, — Regr,a,]]
t=1
» Step 2: regret decomposition as sum of “main regret” and “approximation error”,

E;[Rt a, — Rit1.4,] = G+ Dy

where

Gy & Z Dr(a)pi(a) (Ey [Rea | Ax = a] — B¢ [Rit.a])

acA

and

DTéZ(\/pt(Q)_\/pt )(\/Pt JE¢ [Rt,a | Ax = a] +/Pi(a Etha)

acA
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Proof Sketch of Theorem 2

> Step 3: Bound ZtTZIE[Gt]
G < L\/d Ty (Ax; (A¢, R 4,))  (information-theoretic)

T
= ZE [G] < t\/dTH (A.)  (Cauchy-Schwartz inequality + chain rule)
t=1

> Step 4: Bound ZtT:lE [G+]

E[D:] < n\/E[d? (ptllp:)]  (Cauchy-Schwartz inequality)
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Bound 3/, /E[dZ (7:[p:)]

Lemma 4.

Under ES, for all t € [T,

Klog(6(t + 1)M)
U .

E[drr (pellpe)] <

» Plugging Lemma 4 into the general regret bound in Theorem 2, we achieve the regret
bound for ES in Theorem 1
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Proof of Lemma 4

» ES first uniformly samples m € [M], and then samples the action A; corresponding to 0~t7m

uniformly from the optimal action set
flt,m := arg max aTét,m
acA

» Define the following approximation of p;(a)

pe(a) == .7\147;]\2 ‘ 1 ‘H{a € Atm}

Atm

)

» History H; does not include Wt, and

) 7] R [/i/r m
Ot,m = 2 (Etlletl,m + t’At:t’At>

» Given Hy, pi(a) is still random
pe(a) = E¢ [pe(a)]
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Proof of Lemma 4

» By convexity of KL divergence, the per-period approximation error
dir, (Pellpe) = dir (Ee [Pe] [lpe) < Eq [dkw (Pt lpe)]
» Taking expectation on both sides
E [dxr, (Ptllpe)] < E [dxr, (5el[pe)]

E[dxz (3illpo)] / P (dis (Bellpe) > €) de
0

» Derive an upper bound on P (dx 1, (p¢|p:) > €) for any € > 0
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Proof of Lemma 4

» For simplicity, consider deterministic action sequence ay.; := (a1, ...,a;). Write
p?litil () = Pt (A* - | ai, Rl,a17 ey Q—1, Rt,atfl)
» Under deterministic action sequence a; .

ag:t—1 N@0:t—1
9t)1 ,...,Ht’M ‘Rl,alwuvRt,at,l N]P}(GG )

AQQ:t—
> 0:t—1 1

Dy is an empirical distribution for p;**~

Fact 5 (Sanov’s theorem).
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Relate to stochastic action sequence

» Using Sanov's theorem
P (dxr, (577 [p{ ") > €] 0) < (M +1)Ke Me

» By applying the union bound over action counts, instead of action sequences

IE”( max dir, (7 o™ ) > € 9> <+ 1)K (M +1)KeMe

ao:t—1€

» Relate to the KL divergence associated with stochastic action sequence

P(dKL (ﬁtht) >€|9) <P< mag dxr (ptOt 1” ag:t— 1) >€|9)

ap:t—1
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Proof

» Fix t. For any € > 0,
P(dkr (pillpe) > €) = B[P (dxr (Bellpe) > €]0) 6] < (¢ + 1)% (M + 1)K e Me.
» For any threshold ¢ > 0,

B ldi, (5] = | P (di, (Brllpe) > ) de

o0

<6+(t+1)K(M+1)K/ e Mede
é

(t+ 1)K (M4 1)Ke M0

=+ i

Klog(t+1)+log(M+1)]
M

» Choosing the optimal §* =

B fdics ()] < S B Do AT DI K loeO 2 DY)

Appendix 30/30



	Introduction
	Preliminaries
	Regret Bound
	Approximation Error under ES
	Appendix

