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Introduction



Markov Decision Processes

• Infinite-horizon MDPs with time-independent dynamics
M = (S,A, γ,P,R).

• Bellman Optimality Equation:

Q⋆(s,a) = R(s,a) + γEs′∼P(·|s,a)
[
max
a′∈A

Q⋆(s′,a′)
]
, ∀(s,a) ∈ S ×A.

• Bellman operator T :

T (Q)(s,a) = R(s,a) + γEs′∼P(·|s,a)
[
max
a′

Q(s′,a′)
]
.

However, in practice, we do not know P so that T is not
applicable.

• γ-contractility (0 < γ < 1):

max
(s,a)

|T (Q1)(s,a)− T (Q2)(s,a)| ≤ γmax
(s,a)

|Q1(s,a)− Q2(s,a)| .
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Linear Function Approximation

Consider the case where Q(s,a) is linearly parameterized by θ ∈ Rd,
i.e., Q(s,a) = ϕ(s,a)⊤θ, where ϕ(s,a) ∈ Rd is the given feature.

Suppose we can sample the data pair (s,a, r, s′) from a given
distribution µ.

• We first sample (s,a) ∼ µ(s,a), then we sample s′ ∼ P(·|s,a). We
assume µ(s,a) > 0 for all (s,a) ∈ S ×A.

Our goal is to compute the optimal Q-value function
Q⋆(s,a) = ϕ(s,a)⊤θ⋆.
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Q-Learning

Q-Learning is a stochastic approximation method to solve the
Bellman optimal equation.

Qt+1(st,at) = (1− αt)Qt(st,at) + αt

(
r(st,at) + γmax

a′
Qt(st+1,a′)

)
= Qt(st,at) + αt

[
r(st,at) + γmax

a′
Qt(st+1,a′)− Qt(st,at)

]

In the linear function approximation case, we have

θt+1 = θt + αt

[
r(st,at) + γmax

a′
ϕ(st+1,a′)⊤θt − ϕ(st,at)⊤θt

]
ϕ(st,at).
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Divergence of Q-Learning with LFA

Unfortunately, Q-Learning with LFA can diverge.
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Figure 1: A simple MDP where Q-Learning with LFA can diverge [SB18].

Here ϕ(s1) = 1 and ϕ(s2) = 2, and θ ∈ R is the optimal parameter to
solve. We know that θ⋆ = 0. Assume µ(s1) = µ(s2) = 0.5.

E [θt+1|θt] = θt + αtE
{
[r(st,at) + γmax

a′
ϕ(st+1,a′)⊤θt − ϕ(st,at)⊤θt]ϕ(st,at)

}
= [1− (2.5− 3γ)αt] θt.

When γ > 5/6, for any αt > 0, we have that E[θt] will diverge.
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Deadly Triad

In the famous book [SB18], Sutton et al. contributed the divergence
of Q-learning by three reasons.

• Off-policy. “Training on a distribution of transitions other than that
produced by the target policy.” (In the on-policy case, we can show that
policy evaluation is convergent [TVR97].)

• Function Approximation. “ Stability is guaranteed for function
approximation methods that do not extrapolate from the observed
targets.”

• Bootstrapping. “ Update targets that include existing estimates (as in
dynamic programming or TD methods) rather than relying exclusively
on actual rewards and complete returns (as in MC methods).”

Sutton et al. called the combination of the above factors as a deadly
triad.
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Target Q-Learning

To address the diverge issue, target Q-learning is introduced
[MKS+15]:

θt+1 = θt + αt

[
r(s,a) + γmax

a′
ϕ(st+1,a′)⊤θ − ϕ(st,at)⊤θt

]
ϕ(st,at),

where θ is fixed over several iterations.

Specifically, the above update rule can be viewed SGD step of

min
θ
F(θ; θ) :=

∑
(s,a)

µ(s,a)
(
ϕ(s,a)⊤θ − T (θ)(s,a)

)2
,

where T (θ) is the Bellman update w.r.t. θ:

T (θ)(s,a) := r(s,a) + γEs′ [max
a′

ϕ(s′,a′)⊤θ].
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Target Q-learning

Let θk−1 be the target parameter in each epoch k.

Algorithm 1 Target Q-Learning
1: for epoch k = 1, 2, · · · , do
2: for iteration t = 1, 2, · · · , T− 1 do
3: Sample (s,a, r, s′) from µ and update

θt+1 = θt + αt[rt + γ max
a′∈A

ϕ(st+1,a′)⊤θk−1 − ϕ(st,at)⊤θt]ϕ(st,at).

4: end for
5: wk = wT.
6: end for
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Intuition Behind Target Q-learning

In DP (dynamic programming) based analysis, we care about the
criterion:

E

[
sup
(s,a)

∣∣∣ϕ(s,a)⊤θT − T (θk−1)(s,a)
∣∣∣]

≤ E

 1
µmin

∑
(s,a)

µ(s,a)
∣∣∣ϕ(s,a)⊤θT − T (θk−1)(s,a)

∣∣∣


≤ 1
µmin

E

√∑
(s,a)

µ(s,a)
(
ϕ(s,a)⊤θT − T (θk−1)(s,a)

)2
=

1
µmin

E
[√

F(θT; θk−1)
]
.

where µmin = min(s,a) µ(s,a).
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Intuition Behind Target Q-learning

Assume θk−1⋆ belongs to the optimal solution set in the inner loop:

θk−1⋆ ∈ argmin
θ

F(θ; θk−1).

After T inner iterations, assume in expectation, we have

E[F(θT; θk−1)]− F(θk−1⋆ ; θk−1) ≤ εopt.

Then,

appro. Bellman error︸ ︷︷ ︸
sup(s,a) |ϕ(s,a)⊤θT−T (θk−1)(s,a)|

≤ func. approx. error︸ ︷︷ ︸
F(θk−1

⋆ ;θk−1)

+opt. error︸ ︷︷ ︸
εopt

• For LFA, it is reasonable to assume εopt is small when T is
sufficiently large.

• But, it is not safe to assume the function approximation error is
bounded.

10



Function Approximation Error May not be Bounded

Consider the θ − 2θ example again:

θk−1⋆ = argmin
θ

F(θ; θk−1)

= argmin
θ∈R

0.5(θ − 2γθk−1)2 + 0.5(2θ − γ2θk−1)2

=
6
5γθ

k−1.

Then, the function approximation error is

F(θk−1⋆ ; θk−1) =
4
25γ

2(θk−1)2.

This says that when γ > 5/6, {θk−1} diverges and the function
approximation error {F(θk−1⋆ ; θk−1)} diverges too.
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Solving the Deadly Triad



Over-parameterized LFA

Assume Φ ∈ R|S||A|×d has a full row rank (over-parameterization).

Over-parameterization allows the function approximation error is 0:

F(θk−1⋆ ; θk−1) = 0, ∀k ≥ 0

Consequently, approx. Bellman error becomes:

E

[
sup
(s,a)

∣∣∣ϕ(s,a)⊤θT − T (θk−1)(s,a)
∣∣∣] ≤ 1

µmin
E
[√

F(θT; θk−1)
]

≤ 1
µmin

√
εopt.

12



Approximate Bellman Update

E

[
sup
(s,a)

∣∣ϕ(s,a)⊤θK − Q⋆(s,a)
∣∣]

≤ E
[
sup
(s,a)

∣∣ϕ(s,a)⊤θK − T (θK−1)(s,a)
∣∣ ]+ E

[
sup
(s,a)

∣∣T (θK−1)(s,a)− Q⋆(s,a)
∣∣ ]

≤ 1
µmin

√
εopt + γE

[
sup
(s,a)

∣∣ϕ(s,a)⊤θK−1 − Q⋆(s,a)
∣∣ ]

≤ · · · · · ·

≤
√
εopt

µmin(1− γ)︸ ︷︷ ︸
cumulative opt. error

+ γK−1 sup
(s,a)

∣∣ϕ(s,a)⊤θ1 − Q⋆(s,a)
∣∣︸ ︷︷ ︸

decaying init. error

.
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Deadly Triad in Over-parameterization Case

To justify the target Q-Learning in the over-parameterized case, we
can give an example in which the vanilla Q-Learning diverges.

V(1)=w +2w
0      1

V(2)=w  +2w
0      2

V(3)=w  +2w
0      3

V(4)=w  +2w
0      4

V(5)=w  +2w
0      5

V(6)=2w  +w
  0    6

Figure 1. The star problem

2 ALGORITHMS FOR LOOKUP TABLES

Perhaps the simplest form of reinforcement learning
problem is the task of learning the value function for a
Markov chain, which is a degenerate MDP for which
there is only one possible action to choose from in each
state.  Such problems are often solved using algorithms
based upon dynamic programming (Bertsekas 87),
which involves storing information associated with
each state, then updating the information in one state
based upon the information in subsequent states.  For
predicting the outcome of a Markov chain, an obvious
learning algorithm is an incremental form of value
iteration, which is defined as:

V x R V x( ) ( ' )α γ←  + (2)

Update (2) represents the learning that occurs after
observing a transition from state x to state x' with
immediate reinforcement of R.  The value of the earlier
state, V(x), is modified to be closer to the value of the
expression on the right side, R+ � V(x'), with the rate of
learning controlled by a learning rate � .  For this
particular type of MDP, if each V(x) is a separate entry
in a lookup table, then update (2) is also equivalent to
three other reinforcement learning algorithms: TD(0)
(Sutton 88), Q-learning (Watkins 89), and advantage
learning (Baird 95).  If an implementation of update
(2) fails to converge in some cases, then all of these
other algorithms also fail to converge in some cases,
and so it is important to find an algorithm that can
solve this simple MDP using general function-
approximation systems.

3 DIRECT ALGORITHMS

If the MDP has a finite number of states, and each V(x)
is represented by a unique entry in a lookup table, and
each possible transition is experienced an infinite
number of times during learning, then update (2) is

guaranteed to converge to the optimal value function as
the learning rate �  decays to zero at an appropriate
rate.  The various states can be visited in any order
during learning, and some can be visited more often
than others, yet the algorithm will still converge if the
learning rates decay appropriately (Watkins, Dayan
92).  If V(x) was represented by a function-
approximation system other than a lookup table, update
(2) could be implemented directly by combining it with
the backpropagation algorithm (Rumelhart, Hinton,
Williams 86).  For an input x, the actual output of the
function-approximation system would be V(x), the
“desired output” used for training would be R+ � V(x'),
and all of the weights would be adjusted through
gradient descent to make the actual output closer to the
desired output.  For any particular weight w in the
function-approximation system, the weight change
would be:

∆w R V x V x
V x

w
= + −α γ ∂

∂
( )( ' ) ( )

( )
(3)

Equation (3) is exactly the TD(0) algorithm, by
definition.  It could also be called the direct
implementation of incremental value iteration, Q-
learning, and advantage learning.  The direct
algorithm reduces to the original algorithm when used
with a lookup table.  Tesauro (90,92)has shown very
good results by combining TD(0) with backpropagation
(and also using the more general TD( � )).  Since it is
guaranteed to converge for the lookup table, this
approach might be expected to also converge for
general function-approximation systems.
Unfortunately, this is not the case, as is illustrated by
the MDP shown in figure 1.  In figure 1, there are six
states, and the value of each state is given by the linear
combination of two weights.  Every transition yields a
reinforcement of zero.  During training, each possible
transition is observed equally often.  The function-
approximation system is simply a lookup table, with
one additional entry giving generalization.  This is an

Figure 2: Baird example to show that Q-Learning can diverge in the
over-parameterized case [III95].
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Optimization Error of Over-Parameterization LS

(Proposition 1) Opt. Error is Bounded for Target Q-Learning

Consider the inner loop in iteration k. Suppose that
2

µmin
E
[
F(θT; θi)

]
≤ (1− γ)2, ∀i ≤ k− 1.

If we set αt = η0
β+t , where η0 = 2/C3, β = (51λmaxγ

2)/(8C23) − 1,
then we have that

E
[
F(θt; θk−1)

]
≤ 102λmaxγ

2

C23(1− γ)2
1

β + t , ∀t ≥ 0,

where C3 = 1/(λmaxC22), in which C2 further depends on the error
bound parameter C1, and λmax is the maximum eigenvalue of
the feature matrix E(s,a)∼µ[ϕ(s,a)ϕ(s,a)⊤].

This result is not published yet.
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Proof Sketch of Proposition 1

Proof of Proposition 1 mainly relies on the classical analysis for SGD
[BCN18].

There are two things beyond the classical analysis:

• Strong convexity does not hold for the over-parameterized least
square problem. Following [SZ17], we use the error bound
analysis [LT93] to argue that PL(Polyak-Łojasiewicz) condition
holds, which is used to show the sublinear convergence.

• Following [LH20], we show that the variance of stochastic
gradient is upper bounded over iterations k. Instead, the
classical SGD assumes the variance is uniformly bounded.
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ZIBEL MDP

In the under-parameterized case, we assume Φ ∈ R|S||A|×d has a full
column rank and E(s,a)∼µ[ϕ(s,a)ϕ(s,a)⊤] is a positive definite matrix.

As discussed, we need a very strong assumption about the function
approximation error:

For anM = (S,A, γ,P,R) with a feature map ϕ : S ×A → Rd,
IBE(M) is defined as:

sup
θ∈Rd

inf
θ′∈Rd

sup
(s,a)

∣∣⟨ϕ(s,a), θ′⟩ − r(s,a)− γEs′∼P(·|s,a)[ sup
a′∈A

⟨θ, ϕ(s′,a′)⟩]
∣∣.

(ZIBEL MDP) [ACJ+21]: if IBE(M) = 0, we call this MDP as a ZIBEL
(zero inherent Bellman error with linear function approximation).
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ZIBEL MDP

Based on IBE(M) = 0, we can show that for any θ, there exists a
unique θ⋆ such that

ϕ(s,a)⊤θ⋆ = r(s,a) + γEs′
[
max
a′

ϕ(s′,a′)⊤θ
]

︸ ︷︷ ︸
T (θ)(s,a)

, ∀(s,a).

This implies that the function approximation error is also zero.
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Analysis for ZIBEL MDP

In the under-parameterized case, we can have a simple analysis
(rather than SGD based analysis) [ACJ+21].

To simplify notation, let ϕt = ϕ(st,at).

θt+1 = θt + αt

[
r(s,a) + γmax

a′
ϕ(st+1,a′)⊤θ − ϕ⊤

t θt

]
ϕt,

= (I− αtϕtϕ
⊤
t )θt + αtϕt

[
r(s,a) + γmax

a′
ϕ(st+1,a′)⊤θ

]
.

As a result,

E
[
θt+1 − θ⋆ | θt

]
= E

[
(I− αtϕtϕ

⊤
t )θt + αtϕtϕ

⊤
t θ⋆ − θ⋆ | θt

]
= (I− αtE[ϕtϕ⊤

t ])(θt − θ⋆).

Because E[ϕtϕ⊤
t ] is PD as assumed, we can show that the above

recursion is contractive for some αt > 0. (This analysis cannot be
applied in the over-parameterization case)
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Beyond ZIBEL MDP

Note (approximate) ZIBEL even does not hold for the simple θ − 2θ
MDP.

Recently, [CCM22] introduced a relaxed approximation error Eapprox is
bounded:

sup
θ∈Θ

inf
θ′∈Rd

sup
(s,a)

∣∣⟨ϕ(s,a), θ′⟩ − r(s,a)− γEs′∼P(·|s,a)[ sup
a′∈A

⟨θ, ϕ(s′,a′)⟩]
∣∣

where Θ = {θ : sup(s,a) |⟨ϕ(s,a), θ⟩| < 1/(1− γ)}.

This assumption says that when θ is bounded, the approximation
error is bounded, which holds for the θ − 2θ MDP.

However, such an assumption is not sufficient to show the
convergence of target Q-learning.
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Bounded Approximation Error
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Figure 3: A simple MDP in [CCM22] to show that target Q-Learning can diverge
even though Eapprox is bounded.

Reward information: (r(s1,a1), r(s1,a2), r(s2,a1), r(s2,a2)) = (1, 2, 2, 4).
The feature map is Φ = (1, 2, 2, 4)⊤. Sampling distribution µ is
uniform. After calculation, we have that

θ⋆ = 1+ 9γ
10 θ +

3γθ
10

(
Iθ≥0 − Iθ<0

)
.

We see that when γ > 5/6 and the initialization is positive, target
Q-Learning would diverge.
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Truncation in Target Network

Intuition in Figure 3: even though sup(s,a) |ϕ(s,a)⊤θ| is bounded, T (θ)

may lies out the range of bounded approx. error.

To address the “over-estimation” issue, [CCM22] proposed to
implement the truncation:

θt+1 = θt + αt

[
⌈r(s,a) + γmax

a′
ϕ(st+1,a′)⊤θ⌉ − ϕ(st,at)⊤θt

]
ϕ(st,at),

where ⌈x⌉ = clip(x,−1/(1− γ), 1/(1− γ)).

This ensures that the approximation error encountered by the
algorithm is always bounded.

Note that in the over-parameterized case Eapprox = 0, and we do not
need the truncation.
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Real-World Target Q-Learning



Extension to Deep Neural Networks

In practice, we use wide and deep neural networks, which can also
perform the “over-parameterization”.

But, the optimization problem is non-convex now. Mathematically,
we aim to sequentially solve K non-convex least-square problems.

The theory under LFA tells us that it is fine to run a large inner
iterations T, which may not true in the neural network case.
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A Deep Target Q-Learning Experiment

Figure 4: Figure is from [KAGL20].

We find that large inner iterations can hurt the performance.
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Understand Deep Target Q-Learning

Deep and wide neural network can have a strong approximation
ability. But it does not mean that we can find the optimal parameter
from any initialization point.

It is a folklore that a random initialization is good in the sense that
there exists an optimal parameter close to this initialization.

Unfortunately, deep target Q-Learning inherits the initialization from
the last iterate, which may not be good.

We can solve the mentioned issue by re-initialize randomly for each
inner loop, but the computation cost is high.

We need more insights and principled methods to solve the
“sequential non-convex optimization problem”.
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