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Introduction



Markov Decision Processes

- Infinite-horizon MDPs with time-independent dynamics
M = (87 ‘A7 ’Y? P7 R)
- Bellman Optimality Equation:

Q*(s,a) = R(s,a) +vEs ~p(.|s,a) {gﬂgﬁ Q*(S'va’)} , Y(s,a) € S x A
- Bellman operator 7
T(Q)(S, Cl) = R(S, G) + 'Y]ES/NP(-\S,G) [magx Q(S’, a/):| .

However, in practice, we do not know P so that 7 is not
applicable.
- ~-contractility (0 < v < 1):
max [T(Qi)(s,a) — T(Q)(s,a)| <~ S Qi(s, a) — Qu(s, a)| -
s,a

(s,a)



Linear Function Approximation

Consider the case where Q(s, a) is linearly parameterized by § € RY,
i.e, Q(s,a) = ¢(s,a) ", where ¢(s,a) € RY is the given feature.

Suppose we can sample the data pair (s,a,r,s’) from a given
distribution p.

- We first sample (s, a) ~ u(s,a), then we sample s’ ~ P(:|s,a). We
assume p(s,a) > 0 forall (s,a) € S x A.

Our goal is to compute the optimal Q-value function
Q*(s,a) = ¢(s,a) 70",



Q-Learning is a stochastic approximation method to solve the
Bellman optimal equation.

Qea(St; ar) = (1 — at)Qe(St, ) + vt ("(St, a) +7 iR Q:(St+1, G/)>

= Qi(St, ar) + o [r(Su ar) + v max Qu(Se, a’) = Q(st, Gt)}

In the linear function approximation case, we have

Orir = 0 + o {f(sza Qr) + 7 max ¢(Se41, a’)" 6 — (st Gt)THt} ¢(St, at).



Divergence of Q-Learning with LFA

Unfortunately, Q-Learning with LFA can diverge.

o

Figure 1: A simple MDP where Q-Learning with LFA can diverge [SB18].

Here ¢(s1) = 1and ¢(s;) =2, and 6 € R is the optimal parameter to
solve. We know that 6* = 0. Assume u(s1) = p(s;) = 0.5.

E [0:4116:] = 0: + a:E{[r(st, ar) + max d(St41,0") 0 — B(st, ar) " Oelp(st, ar) }
= [1 — (25 — 3’7)04] Gt.
When ~ > 5/6, for any a; > 0, we have that E[6;] will diverge.



Deadly Triad

In the famous book [SB18], Sutton et al. contributed the divergence
of Q-learning by three reasons.

- Off-policy. “Training on a distribution of transitions other than that
produced by the target policy.” (In the on-policy case, we can show that
policy evaluation is convergent [TVR97].)

- Function Approximation. “ Stability is guaranteed for function
approximation methods that do not extrapolate from the observed
targets”

- Bootstrapping. “ Update targets that include existing estimates (as in
dynamic programming or TD methods) rather than relying exclusively
on actual rewards and complete returns (as in MC methods).”

Sutton et al. called the combination of the above factors as a deadly
triad.



Target Q-Learning

To address the diverge issue, target Q-learning is introduced
[MKS*t15]:

Oty = 0t + o |:r(57 a)+~ mae;x P(St41, G/)Te — o(st, at)TQI} é(St, ar),

where @ is fixed over several iterations.

Specifically, the above update rule can be viewed SGD step of

Z,usa (s,a)"6 —T(A)(s, ))2,

where T(8) is the Bellman update w.rt. 6:

T(0)(s,a) :=r(s,a) + 7Es [max (s, a)'a).



Target Q-learning

Let #*=" be the target parameter in each epoch k.

Algorithm 1 Target Q-Learning
1: forepoch k=1,2,--- ., do
2: for iterationt=1,2,--- ,T—1do
3 Sample (s,a,r,s’) from p and update

Orr1 = Or + cu[re + Wygﬁ P(Sty1, a/)TGk_1 — ¢(St, at)Tat](b(Sta ay).

4 end for
5: wh = wr.
6: end for




Intuition Behind Target Q-learning

In DP (dynamic programming) based analysis, we care about the

criterion:
E [?U% ¢(57 G)TGT - ’T(Qh_1)(s7 G)”
<E [M1' Z /1'(5’ G) ’(/)(Sv G)TGT - T(9k71)(5’ O)‘]
min (s,a)

Mmln

(s,a)

[ > u(s,a) (¢(s,a)Tor — T(GR—W)(s,a))zl

_ MlinE { F(or: 9*@—1)} .

where pimin = mings q) 1(S, a).



Intuition Behind Target Q-learning

Assume 0% belongs to the optimal solution set in the inner loop:

0" ¢ argmin F(6; 6% ").
0

After T inner iterations, assume in expectation, we have

E[F(67; 6F )] — F(O% 6% 7") < eopt.-

Then,
appro. Bellman error < func. approx. error 4+ opt. error
——
SUP(s,q) lp(s,0) T Or—=T(6%=")(s,a)| F(G’i_j;@k“) Eopt

- For LFA, it is reasonable to assume gqp is small when T is
sufficiently large.

- But, it is not safe to assume the function approximation error is
bounded.



Function Approximation Error May not be Bounded

Consider the 6 — 20 example again:
0" = argmin F(6; 0" ")
0

= argmin 0.5(0 — 290" ~")? + 0.5(20 — 726" ")?
0cR

6
=~y
5’Y
Then, the function approximation error is

4
k=1, gk—=1y _ *F _209k—1y2
F(OE601) = e (0"

This says that when v > 5/6, {#*~"} diverges and the function
approximation error {F(6%="; 9*=")} diverges too.
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Solving the Deadly Triad




Over-parameterized LFA

Assume ¢ e RISIIAIXd has a full row rank (over-parameterization).

Over-parameterization allows the function approximation error is 0:
FOfF" 6"y =0, Vk>0

Consequently, approx. Bellman error becomes:

E |sup |¢(s, a)"0r — T(0"7)(s, a)” < M1 E{ F(or, eh—”]
6.2 min
< ! V/Eopt-

HMmin



Approximate Bellman Update

E |sup |¢(S, a)" ok — Q*(s, a)|]
(s,a)
<E {sup lp(s,a) 765 — T (6" ")(s,a)| ] + ]E{sup [T (0 ")(s,a) — Q*(s,0)|
(s,a (s,a)
< . ,/6opt+7E{sup}¢s a)" o’ Q*(S,a)@
imin (s,a
< VIO K=l (s, a) 70" — Q*(s, a)|.

fmin(1 =) (s,a)

cumulative opt. error decaying init. error




Deadly Triad in Over-parameterization Case

To justify the target Q-Learning in the over-parameterized case, we
can give an example in which the vanilla Q-Learning diverges.

CCCCE
i

Figure 2: Baird example to show that Q-Learning can diverge in the
over-parameterized case [11195].



Optimization Error of Over-Parameterization LS

.

(Proposition 1) Opt. Error is Bounded for Target Q-Learning

Consider the inner loop in iteration k. Suppose that
L [F(0r;0")] <(1—7)%Vi<k-1.

Hmin

If we set a; = g4, where o = 2/G3, 8 = (51Amax7?)/(8C3) — 1,

then we have that
_ 102 maxy> 1
E [F(65; 0% )| < =m0 vt >0,
G )}*Cg(T—v)zﬁH =

where C; = 1/(Amax(3), in which G, further depends on the error
bound parameter C;, and Amax IS the maximum eigenvalue of
the feature matrix E q)~,.[#(s, a)é(s,a) T].

This result is not published yet.




Proof Sketch of Proposition 1

Proof of Proposition 1 mainly relies on the classical analysis for SGD
[BCN18].

There are two things beyond the classical analysis:

- Strong convexity does not hold for the over-parameterized least
square problem. Following [SZ17], we use the error bound
analysis [LT93] to argue that PL(Polyak-tojasiewicz) condition
holds, which is used to show the sublinear convergence.

- Following [LH20], we show that the variance of stochastic
gradient is upper bounded over iterations k. Instead, the
classical SGD assumes the variance is uniformly bounded.
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ZIBEL MDP

In the under-parameterized case, we assume ¢ e RISIAIxd has 3 full
column rank and Es q)~,.[#(s, a)¢(s,a) ] is a positive definite matrix.

As discussed, we need a very strong assumption about the function
approximation error:

For an M = (S, A,~, P,R) with a feature map ¢ : S x A — RY,
IBE(M) is defined as:

sup inf sup |<¢(S, a),0") —r(s,a) — YEs ~p(.|s,a)[ sup (6, o(s', a')>]|.
9cRI 0" €RY (s.q) acA

(ZIBEL MDP) [AC)*F21]: if IBE(M) = 0, we call this MDP as a ZIBEL
(zero inherent Bellman error with linear function approximation).



ZIBEL MDP

Based on IBE(M) = 0, we can show that for any 0, there exists a
unique @, such that

#(s,a) "0, = r(s,a) + 1Es {maz/)xqb(s/’ a/)TQ]’ v(s,a).

T(O)(s,0)

This implies that the function approximation error is also zero.



Analysis for ZIBEL MDP

In the under-parameterized case, we can have a simple analysis
(rather than SGD based analysis) [AC)*21].

To simplify notation, let ¢; = ¢(St, ar).
Orir = b0+ [r(s, a) +ymax é(si1,a') 0 — <f>?9r} P,

= (I — cuedy )0: + 0y [r(s, a)+~ max B(Sti1, a/)ﬂg] .
As a result,
E [0r1 — 0, | 0] = E [(I — cugeod )0c + cudpedy 05 — 0, | 6]
= (I — aElpegy 1)(6: — 6,).

Because E[¢:#/ ] is PD as assumed, we can show that the above
recursion is contractive for some a; > 0. (This analysis cannot be
applied in the over-parameterization case)

19



Beyond ZIBEL MDP

Note (approximate) ZIBEL even does not hold for the simple § — 26
MDP.

Recently, [CCM22] introduced a relaxed approximation error Expprox IS
bounded:

sup inf sup }<¢(57 0)7 9/> - r(S, a) - ’YES/NP(-\S,G)[ sup <97 ¢(S/7 G/)>]|
9c0 0'€RY (s,q) a’eA

where © = {0 : sup(s o) [(6(s,a),0)| < 1/(1 =)}

This assumption says that when 6 is bounded, the approximation
error is bounded, which holds for the 8 — 260 MDP.

However, such an assumption is not sufficient to show the
convergence of target Q-learning.

20



Bounded Approximation Error

Figure 3: A simple MDP in [CCM22] to show that target Q-Learning can diverge
even though Epprox IS bounded.

Reward information: (r(sq,a), r(s1,az), r(s2, a1), r(s2,a2)) = (1,2,2, 4).
The feature map is ® = (1,2,2,4)". Sampling distribution p is
uniform. After calculation, we have that

= 97 379

0. =1+ 30+ 3 (%20 N H5<0) '
We see that when v > 5/6 and the initialization is positive, target
Q-Learning would diverge.
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Truncation in Target Network

Intuition in Figure 3: even though sup(s o) [¢(s,a) " 6| is bounded, 7(0)
may lies out the range of bounded approx. error.

To address the “over-estimation” issue, [CCM22] proposed to
implement the truncation:

Ocer = Oc + ar | [1(s, 0) + Y maxd(st41,0') 0] — é(st, ar) ;| ¢(st, ar),

where [x] = clip(x, <1/(1 = 7), 1/(1 = 7)).
This ensures that the approximation error encountered by the
algorithm is always bounded.

Note that in the over-parameterized case E,pprox = 0, and we do not
need the truncation.
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Real-World Target Q-Learning




Extension to Deep Neural Networks

In practice, we use wide and deep neural networks, which can also
perform the “over-parameterization”.

But, the optimization problem is non-convex now. Mathematically,
we aim to sequentially solve K non-convex least-square problems.

The theory under LFA tells us that it is fine to run a large inner
iterations T, which may not true in the neural network case.
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A Deep Target Q-Learning Experiment
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Figure 4: Figure is from [KAGL20].

We find that large inner iterations can hurt the performance.
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Understand Deep Target Q-Learning

Deep and wide neural network can have a strong approximation
ability. But it does not mean that we can find the optimal parameter
from any initialization point.

It is a folklore that a random initialization is good in the sense that
there exists an optimal parameter close to this initialization.

Unfortunately, deep target Q-Learning inherits the initialization from
the last iterate, which may not be good.

We can solve the mentioned issue by re-initialize randomly for each
inner loop, but the computation cost is high.

We need more insights and principled methods to solve the
“sequential non-convex optimization problem”.
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