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What to Expect from This Talk?

I A big picture on imitation learning (IL).

I Understand the fundamental difference between the offline setting and active setting in IL.
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Background of Imitation Learning
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Figure 3: The top and middle rows show value estimates by DQN (orange) and Double DQN (blue) on six Atari games. The
results are obtained by running DQN and Double DQN with 6 different random seeds with the hyper-parameters employed by
Mnih et al. (2015). The darker line shows the median over seeds and we average the two extreme values to obtain the shaded
area (i.e., 10% and 90% quantiles with linear interpolation). The straight horizontal orange (for DQN) and blue (for Double
DQN) lines in the top row are computed by running the corresponding agents after learning concluded, and averaging the actual
discounted return obtained from each visited state. These straight lines would match the learning curves at the right side of the
plots if there is no bias. The middle row shows the value estimates (in log scale) for two games in which DQN’s overoptimism
is quite extreme. The bottom row shows the detrimental effect of this on the score achieved by the agent as it is evaluated
during training: the scores drop when the overestimations begin. Learning with Double DQN is much more stable.

The ground truth averaged values are obtained by running
the best learned policies for several episodes and computing
the actual cumulative rewards. Without overestimations we
would expect these quantities to match up (i.e., the curve to
match the straight line at the right of each plot). Instead, the
learning curves of DQN consistently end up much higher
than the true values. The learning curves for Double DQN,
shown in blue, are much closer to the blue straight line rep-
resenting the true value of the final policy. Note that the blue
straight line is often higher than the orange straight line. This
indicates that Double DQN does not just produce more ac-
curate value estimates but also better policies.

More extreme overestimations are shown in the middle
two plots, where DQN is highly unstable on the games As-
terix and Wizard of Wor. Notice the log scale for the values
on the y-axis. The bottom two plots shows the correspond-
ing scores for these two games. Notice that the increases in
value estimates for DQN in the middle plots coincide with
decreasing scores in bottom plots. Again, this indicates that
the overestimations are harming the quality of the resulting
policies. If seen in isolation, one might perhaps be tempted
to think the observed instability is related to inherent in-
stability problems of off-policy learning with function ap-
proximation (Baird 1995, Tsitsiklis and Van Roy 1997, Maei

no ops human starts
DQN DDQN DQN DDQN DDQN

(tuned)
Median 93% 115% 47% 88% 117%
Mean 241% 330% 122% 273% 475%

Table 1: Summarized normalized performance on 49 games
for up to 5 minutes with up to 30 no ops at the start of each
episode, and for up to 30 minutes with randomly selected
human start points. Results for DQN are from Mnih et al.
(2015) (no ops) and Nair et al. (2015) (human starts).

2011, Sutton et al. 2015). However, we see that learning is
much more stable with Double DQN, suggesting that the
cause for these instabilities is in fact Q-learning’s overopti-
mism. Figure 3 only shows a few examples, but overestima-
tions were observed for DQN in all 49 tested Atari games,
albeit in varying amounts.

Quality of the learned policies
Overoptimism does not always adversely affect the quality
of the learned policy. For example, DQN achieves optimal

2098

(a) Double DQN requires million interactions to solve
Atari games [van Hasselt et al., 2016].

(b) Robot directly learns from human demonstrations.

I Two Challenges when applying RL in real world.

– It often requires a large amount of environment interactions.

– It’s hard and inefficient to design proper reward function for each particular task.

I In some real-world scenarios, it is easy to obtain expert-level demonstrations.
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Markov Decision Process
Value function

Value of policy π: long-term discounted reward

∀s ∈ S : V π(s) := E
[ ∞∑

t=0
γtr(st, at)

∣∣ s0 = s

]

• γ ∈ [0, 1): discount factor
• (a0, s1, a1, s2, a2, · · · ): generated under policy π

12/ 74

Markov Decision Process

I Consider a finite episodic Markov Decision Process
(
S,A, H, {Ph}h∈[H] , {rh}h∈[H] , ρ

)
.

I A policy π is a collection of functions πh : S → ∆(A) for all h ∈ [H].

I The value function and Q-value function of π:

V πh (s) , E
[∑H

h′=h rh′ (sh′ , ah′) | sh = s, π
]
, Qπh(s, a) , E

[∑H
h′=h rh′ (sh′ , ah′) | sh = s, ah = a, π

]
.

I The value of policy π: V (π) = Es1∼ρ [V π1 (s1)].

I The state-action distribution induced by π Pπh (s, a) = P (sh = s, ah = a|π).
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Imitation Learning (IL)

⇡(a|s)
<latexit sha1_base64="qBV+Za0JbUuQwUylFLhcnFQI/p4="></latexit>

(s, a) ⇠ ⇡E
<latexit sha1_base64="jz+ybFblCcdOOp+3MEW0em98KOs="></latexit>

Learner Expert

I The expert demonstrations is a set of trajectories D = {(si1, ai1, si2, · · · , siH , aiH)}mi=1, where

actions are the output of expert policy πE, which is assumed to be deterministic.

I Agent directly learns a policy from D without explicit rewards.

I The target in IL: minπ V (πE)− V (π) ⇐⇒ maxπ V (π).
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Settings

There are mainly three settings in IL.

I Offline: Provided with expert dataset, the learner is not allowed to interact with the MDP.

I Active: Without expert dataset in advance, the learner is allowed to interact with the MDP

for m episodes and query an oracle to the expert actions on states collected by the learner.

I Known-transition: With expert dataset in advance, the learner additionally knows the

MDP transition function.

– A “weaker” version: the learner can interact with the MDP a finite number of times.

We focus on the offline and active setting.
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A Big Picture of IL

There are mainly two classes of IL algorithms: Behavioral Cloning (BC) based and Adversarial

Imitation Learning (AIL) based methods.

I BC [Pomerleau, 1991] minimizes the action discrepancy on the expert’s state distribution.

min
π
Lbc

(
π, πE

)
:=

1

H

H∑
t=1

E
st∼Pπ

E
t (·)

[
Ea∼πt(·|st)

[
I
(
a 6= πE

t (st)
)]]

,

Remark: BC is applied under the offline setting.

I Another BC-based method DAgger [Ross et al., 2011] minimizes the action discrepancy on

the learner’s state distribution.

min
π
Ldagger

(
π, πE

)
:=

1

H

H∑
t=1

Est∼Pπt (·)
[
Ea∼πt(·|st)

[
I
(
a 6= πE

t (st)
)]]

,

Remark: DAgger is applied under the active setting.
7 / 25



A Big Picture of IL

I AIL based methods minimize the discrepancy between state-action distributions with some

divergence d. minπ
∑H
h=1 d(Pπh , P

πE

h ).

I Optimizing this objective requires the knowledge of transitions and hence AIL is often

applied under the known-transition setting or its weaker version.

I GAIL [Ho and Ermon, 2016] is a famous AIL method and minimizes the objective in an

adversarial manner like GAN [Goodfellow et al., 2014].

Settings Remarkable Algorithms

Offline BC

Active DAgger, AGGREVATE [Ross and Bagnell, 2014]

Known-transition (weaker version) GAIL, DAC [Kostrikov et al., 2019]
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Theoretical Guarantees

An IL problem is specified by (M, πE). For an IL algorithm Alg, we measure its performance on

(M, πE) by V (πE)− E [V (π)], where π is the output of Alg.

Definition 1: Algorithm-dependent upper bound

Consider Alg, for any IL problems (M, πE), V (πE)− E [V (π)] ≤ Ploy(|S|, H, 1/m).

Definition 2: Setting-dependent lower bound

For any Alg under some specific setting (e.g., offline), there exists a hard IL problem

(M, πE), V (πE)− E [V (π)] ≥ Ploy(|S|, H, 1/m).

I Upper bound measures the performance of an algorithm and lower bound measures the

hardness of some specific setting.

I If an algorithm’s upper bound matches the lower bound, this algorithm is minimax optimal.
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Limitations of the Worst-Case Analysis

Settings Lower Bound Upper Bound

Offline Ω
(
|S|H2

m

)
BC: O

(
|S|H2

m

)
Active Ω

(
|S|H2

m

)
BC: O

(
|S|H2

m

)
Table: Summary of existing results on the lower bound and upper bound [Rajaraman et al., 2020].

I The H2 dependence on BC’s upper bound is known as the compounding errors issue [Ross

and Bagnell, 2010]. The lower bound under the active setting implies that the

compounding error issue is unavoidable even when the learner can interact with the MDP.

I From the worst-case analysis (i.e., for all IL problems), we cannot see the benefits from

online interactions in the active setting.

I The worst-case analysis cannot help explain that DAgger, which operates under the active

setting, often performs better than BC in practice.
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Main Contributions

Settings Lower Bound Upper Bound

Offline Ω
(
|S|H2

m

)
BC: O

(
|S|H2

m

)
Active Ω

(
µ|S|H
m

)
O
(
µ|S|H
m

)
Table: Summary of results on the lower bound and upper bound under the µ-recoverability assumption.

I The authors study a class of IL problems under the µ-recoverability assumption.

I They develop an algorithm with an upper bound O
(
µ|S|H
m

)
under the active setting, which

provably mitigates the compounding errors issue.

I They establish lower bounds Ω
(
|S|H2

m

)
and Ω

(
µ|S|H
m

)
for offline and active setting, resp.

I This result shows the benefits from online interactions and establishes a clear separation

between offline and active setting.
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Revisit the Hard Instance in the Worst-case Analysis
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The first |S| − 1 states are good states and the last state is a bad absorbing state. Green arrows and
blue arrows indicate the transitions via expert actions and non-expert actions. ρ is a state distribution
which supports on good states. The digits besides arrows indicates rewards.

I This hard instance is strict in the sense that if the expert policy visits the bad state

accidentally, it is never able to “recover” and return to good states.

I In practical situations (e.g., driving a car), experts often can recover and collect a high

reward even if a mistake is made locally.
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µ-recoverability Assumption

Definition 3: µ-recoverability

An IL problem is said to satisfy µ-recoverability if for each t ∈ [H] and s ∈ S,

Qπ
E

t (s, πE
t (s))−QπE

t (s, a) ≤ µ,∀a ∈ A.

I If πE plays an non-expert action a at any state s in timestep t and returns to choosing the

expert action afterwards, the expected reward collected is less by at most µ.

I Note that µ ≤ H. Sanity check: when µ = H, IL problems with µ-recoverability

assumption reduce to all IL problems; the results under µ-recoverability assumption reduce

to the worst-case results.

I In the last hard instance, µ = H.
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Upper Bound Under the Active Setting

Theorem 1

Consider the active setting, under the µ-recoverability condition, we can construct an

algorithm which outputs π and have

V (πE)− E [V (π)] -
µ|S|H
m

.

I The policy value gap has a linear dependence on H, which provably breaks the

compounding errors barrier in BC.
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Upper Bound Analysis

Offline, BC: O
(

|S|H2

m

)
V.S. Active: O

(
µ|S|H
m

)
Proposition 1: Reduction Framework [Ross et al., 2011]

Consider IL problems with µ-recoverability assumption, for any π,

V (πE)− V (π) ≤ H
H∑
t=1

E
st∼Pπ

E
t (·)

[
Ea∼πt(·|st)

[
I
(
a 6= πE

t (st)
)]]

V (πE)− V (π) ≤ µ
H∑
t=1

Est∼Pπt (·)
[
Ea∼πt(·|st)

[
I
(
a 6= πE

t (st)
)]]

︸ ︷︷ ︸
L(π,Pπ,πE)

I [Ross et al., 2011] does not show how small is L(π, Pπ, πE). This work designs an

algorithm and shows that L(π, PππE) can be minimized up to O
(
|S|H
m

)
.
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Algorithm Design

Target: find a policy π s.t. E
[
L(π, Pπ, πE)

]
≤ O

(
|S|H
m

)
.

L(π, Pπ, πE) =
∑H
t=1 Est∼Pπt (·)

[
Ea∼πt(·|st)

[
I
(
a 6= πE

t (st)
)]]

I Online learning: find a sequence of policies π1, · · · , πm and output the mixture policy π.

I The mixture policy satisfies that L(π, Pπ, πE) = 1
m

∑m
i=1 L(πi, Pπ

i

, πE).

I Regard L(π, Pπ
i

, πE) as an objective of π and

minπ
∑m
i=1 L(π, Pπ

i

, πE) =
∑m
i=1 L(πE, Pπ

i

, πE) = 0.

I Now the target is changed to upper bound this online learning regret:
m∑
i=1

L(πi, Pπ
i

, πE)−min
π

m∑
i=1

L(π, Pπ
i

, πE) ≤ O (|S|H) .
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Online Learning Framework

Algorithm 1 Online Learning Framework

1: Input: Uniformly initialized policy π1

2: for i = 1, 2, · · · ,m do
3: The learner takes policy πi and observes objective function Li(π) = L(π, Pπ

i

, πE)
4: The learner updates the policy πi+1 ← f(πi, Li(π)) based on some rule.
5: end for

I Caveat: In the IL problem, the objective L(π, Pπ
i

, πE) is not revealed to the learner since

the state-action distribution Pπ
i

is unknown.

I In each round i, we rollout πi to collect a trajectory (si1, a
i
1, · · · , siH , aiH) and establish an

empirical estimation P̂π
i

, i.e., P̂π
i

h (s, a) = I{(sih, aih) = (s, a)}.
I This is not a problem due to L(π, Pπ

i

, πE) = E
[
L(π, P̂π

i

, πE)|πi
]
.
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Online Learning Framework

Algorithm 2 Online Learning Framework

1: Input: Uniformly initialized policy π1

2: for i = 1, 2, · · · ,m do
3: The learner takes policy πi and observe objective function Li(π) = L(π, P̂π

i

, πE)
4: The learner updates the policy πi+1 ← f(πi, Li(π)) based on mirror descent.
5: end for

I L(π, P̂π
i

, πE) is linear w.r.t π and online mirror descent can be applied to solve this online

linear optimization problem.

I Apply the online mirror descent theory [Shalev-Shwartz, 2012] with a little modification.
m∑
i=1

L(πi, P̂π
i

, πE)−min
π

m∑
i=1

L(π, P̂π
i

, πE) ≤ O (H|S| log(|A|)) .

I Modification: leverage minπ
∑m
i=1 L(π, P̂π

i

, πE) = 0 to obtain this constant regret.
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Lower Bound Under the Active Setting

Theorem 2: Lower Bound Under the Active Setting

Under the active setting and µ-recoverability assumption, for any algorithm, there exists

an IL problem such that

V (πE)− E [V (π)] %
µ|S|H
m

.

Here π is the output of the algorithm on this IL problem.

I The upper bound Õ
(
µ|S|H
m

)
of the above algorithm nearly matches this lower bound,

which implies that this algorithm is minimax optimal.
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Proof of Lower Bound Under the Active Setting
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Let M be the above MDP, which is used to establish the lower bound in the worst-case analysis.

To satisfy the µ-recoverability assumption, we scale the reward by a factor of µ/H and the

resultant MDP is denoted as Mµ.

VMµ(πE)− E
[
VMµ(π)

]
=

µ

H

(
VM(πE)− E [VM(π)]

)
%
µ

H

|S|H2

m
=
µ|S|H
m

.

Here % follows the lower bound of Ω
(
|S|H2

m

)
in M.
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Lower Bound Under the Offline Setting

Theorem 3

Under the offline setting and µ-recoverability assumption, for any algorithm, there exists

an IL problem such that

V (πE)− E [V (π)] %
|S|H2

m
.

Here π is the output of the algorithm on this IL problem.

I Recall the minimax rate of µ|S|H
m under the active setting, which provably shows the

benefits of interactions with the MDP.

I This result establishes a clear separation between the policy value gap incurred by algorithms

under the offline setting such as BC, and algorithms which can interact with the MDP.
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The Hard Instance Under the Offline Setting
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I At the bad state, they add a “recovery” action. By taking this recover action, the agent

returns to good states.

I Due to the recovery action, this MDP satisfies µ-recoverability condition for any µ ≥ 1.

I Since the offline dataset does not cover the bad state, any offline IL algorithm fails to

identify this recovery action with a probability of 1− 1
|A| and thus suffers the same policy

value gap as in the original MDP.
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