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What to Expect from This Talk?

> A big picture on imitation learning (IL).

» Understand the fundamental difference between the offline setting and active setting in IL.
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Background of Imitation Learning
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(a) Double DQN requires million interactions to solve (b) Robot directly learns from human demonstrations.

Atari games [van Hasselt et al., 2016].

» Two Challenges when applying RL in real world.

— It often requires a large amount of environment interactions.

— It's hard and inefficient to design proper reward function for each particular task.

» In some real-world scenarios, it is easy to obtain expert-level demonstrations.
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Markov Decision Process
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Markov Decision Process

» Consider a finite episodic Markov Decision Process (S,A, H, {Ph}he[H] ,{rh}he[H] ,p).
» A policy 7 is a collection of functions 7, : S — A(A) for all h € [H].

» The value function and Q-value function of :
Vir(s) £E [Zg:h rh (Spryan) | sp = s,ﬂ] Q7 (s,a) LR [Zgzh Ty (Spryan) | sp = s,ap = a, w} .
» The value of policy m: V(7)) = Eg, ~, [V (s1)].

» The state-action distribution induced by m P[ (s,a) =P (s, = s,a, = a|).
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Imitation Learning (IL)
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Learner Expert
m(als) (s,a) ~ g
» The expert demonstrations is a set of trajectories D = {(s%,a},sb, -, s, a%;)}™, where

actions are the output of expert policy 7F, which is assumed to be deterministic.
» Agent directly learns a policy from D without explicit rewards.
» The target in IL: min, V(rg) — V(7r) <= max, V(7).
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Settings

There are mainly three settings in IL.
» Offline: Provided with expert dataset, the learner is not allowed to interact with the MDP.

» Active: Without expert dataset in advance, the learner is allowed to interact with the MDP

for m episodes and query an oracle to the expert actions on states collected by the learner.

> Known-transition: With expert dataset in advance, the learner additionally knows the
MDP transition function.

— A “weaker” version: the learner can interact with the MDP a finite number of times.

We focus on the offline and active setting.
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A Big Picture of IL

There are mainly two classes of IL algorithms: Behavioral Cloning (BC) based and Adversarial

Imitation Learning (AIL) based methods.
> BC | ] minimizes the action discrepancy on the expert's state distribution.

mlnﬁbc 7T 7F) = HZ se~PrE aNﬂ't("St) []I (a#ﬂ'f (St))]]7

Remark: BC is applied under the offline setting.
» Another BC-based method DAgger [
the learner’s state distribution.

] minimizes the action discrepancy on

Inln‘Cdagger T, ) = = H Z s¢~PF (- a~7rt(~|st) []I (CL 7& Wf (St))]] ,

Remark: DAgger is applied under the active setting.
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A Big Picture of IL

AIL based methods minimize the discrepancy between state-action distributions with some

divergence d. min, Zthl a(pPr, Pff).

Optimizing this objective requires the knowledge of transitions and hence AlL is often
applied under the known-transition setting or its weaker version.

GAIL [ ] is a famous AIL method and minimizes the objective in an

adversarial manner like GAN |

]

Settings Remarkable Algorithms
Offline BC
Active

DAgger, AGGREVATE |

Known-transition (weaker version)

GAIL, DAC |
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Theoretical Guarantees

An IL problem is specified by (M, 7E). For an IL algorithm Alg, we measure its performance on
(M, =) by V(7E) — E[V(7)], where T is the output of Alg.

Definition 1: Algorithm-dependent upper bound

Consider Alg, for any IL problems (M, 7E), V(xE) — E [V (%)] < Ploy(|S|, H,1/m).

Definition 2: Setting-dependent lower bound

For any Alg under some specific setting (e.g., offline), there exists a hard IL problem
(M, 7E), V(nF) —E[V(7)] > Ploy(S], H,1/m).

» Upper bound measures the performance of an algorithm and lower bound measures the
hardness of some specific setting.

» If an algorithm’s upper bound matches the lower bound, this algorithm is minimax optimal.
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Limitations of the Worst-Case Analysis

Settings | Lower Bound | Upper Bound
ofine |- @ (BIFE) 1 BC: 0 (121°
Active | Q(IBEE) ] BC o (1527

Table: Summary of existing results on the lower bound and upper bound |

» The H? dependence on BC's upper bound is known as the compounding errors issue |
]. The lower bound under the active setting implies that the

compounding error issue is unavoidable even when the learner can interact with the MDP.

> From the worst-case analysis (i.e., for all IL problems), we cannot see the benefits from

online interactions in the active setting.

» The worst-case analysis cannot help explain that DAgger, which operates under the active

setting, often performs better than BC in practice.
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Main Contributions

Settings | Lower Bound | Upper Bound
Offline | © ('SW) BC: O ('5'H2)

m m

Active QO (M) o (M)

m m

Table: Summary of results on the lower bound and upper bound under the pu-recoverability assumption.

» The authors study a class of IL problems under the p-recoverability assumption.

» They develop an algorithm with an upper bound O (“‘SJH> under the active setting, which
provably mitigates the compounding errors issue.

» They establish lower bounds 2 (‘ |H ) and Q (%) for offline and active setting, resp.

» This result shows the benefits from online interactions and establishes a clear separation

between offline and active setting.
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Revisit the Hard Instance in the Worst-case Analysis

The first |S| — 1 states are good states and the last state is a bad absorbing state. Green arrows and
blue arrows indicate the transitions via expert actions and non-expert actions. p is a state distribution
which supports on good states. The digits besides arrows indicates rewards.

» This hard instance is strict in the sense that if the expert policy visits the bad state
accidentally, it is never able to “recover” and return to good states.
> In practical situations (e.g., driving a car), experts often can recover and collect a high
reward even if a mistake is made locally.
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p-recoverability Assumption

Definition 3: p-recoverability

An IL problem is said to satisfy u-recoverability if for each ¢t € [H] and s € S,
E
Qt (S ﬂ.t( )) _Q? (Saa) S /Lava € A

» If 7F plays an non-expert action a at any state s in timestep ¢ and returns to choosing the
expert action afterwards, the expected reward collected is less by at most .

» Note that ¢ < H. Sanity check: when p = H, IL problems with p-recoverability
assumption reduce to all IL problems; the results under u-recoverability assumption reduce

to the worst-case results.

» In the last hard instance, u = H.
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Upper Bound Under the Active Setting

Consider the active setting, under the u-recoverability condition, we can construct an
algorithm which outputs 7 and have

V() —E[v(m) 3 O

m

» The policy value gap has a linear dependence on H, which provably breaks the

compounding errors barrier in BC.
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Upper Bound Analysis

Offline, BC: © ('S'H ) V.S. Active: O (“'f;'H>

Proposition 1: Reduction Framework [Ross et al., 2011]

Consider IL problems with p-recoverability assumption, for any ,

H
V(%) = V(M) SHY B oo [Eanmclsn [[(a # 7t (s1))]]
t=1

H
V(?TE) — V(?T) < /LZE&NPJ(.) [anm(.‘st) [H (CL 75 7'&','5E (St))ﬂ
t=1

L(m,P™,nE)

> | ] does not show how small is L(w, P™, 7F). This work designs an

algorithm and shows that L(w, P™7F) can be minimized up to O (lS‘H). )
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Algorithm Design

Target: find a policy 7 s.t. E [L(7, P™,nF)] <O (%)
- H
L(m, P7,m%) = 3521 Bayorr () [Eanm, (s [I(a # 75 (s1))]]
» Online learning: find a sequence of policies 7!, --- , 7™ and output the mixture policy 7.
> The mixture policy satisfies that L(%, P™,n%) = L 3" L(7, P™ ).

» Regard L(m, P%i,wE) as an objective of 7 and
min, y.*, L(m, P™ 7F) = > L(nE, P™ 7By =0.
> Now the target is changed to upper bound this online Iearning regret:

ZL manL BY<O(S|H).
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Online Learning Framework

Algorithm 1 Online Learning Framework

1: Input: Uniformly initialized policy 7!

2: fori=1,2,--- ,m do ‘

3:  The learner takes policy 7 and observes objective function Li(w) = L(m, PT ,7F)
4. The learner updates the policy 7! < f(7, L()) based on some rule.

5: end for

» Caveat: In the IL problem, the objective L(W,Pﬁi,wE) is not revealed to the learner since

the state-action distribution P*" is unknown.

> In each round i, we rollout 7 to collect a trajectory (si,af,- -, sy, a}) and establish an
empirical estimation P™ | i.e., P[ (s,a) = I{(s},a}) = (s,a)}.

> This is not a problem due to L(r, P* ,7E) = E [L(w,ﬁﬁi,ﬂE)ﬁi]
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Online Learning Framework

Algorithm 2 Online Learning Framework

1: Input: Uniformly initialized policy 7!

2: fori=1,2,--- ,m do o

3:  The learner takes policy 7 and observe objective function Li(w) = L(w, P™ , nF)
4. The learner updates the policy 7! <~ f(7, L’(r)) based on mirror descent.

5: end for

» L(m, P™ ,7F) is linear w.r.t 7 and online mirror descent can be applied to solve this online
linear optimization problem.

» Apply the online mirror descent theory [ ] with a little modification.

m m

ZL manL ) < O (HI|S|log(]A])) -

> Modification. Ieverage ming Y .-, (777 }Aﬁi, 7E) = 0 to obtain this constant regret.
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Lower Bound Under the Active Setting

Theorem 2: Lower Bound Under the Active Setting

Under the active setting and u-recoverability assumption, for any algorithm, there exists
an IL problem such that

V(nf) —E[V(T)]

Here 7 is the output of the algorithm on this IL problem.

. MSIH
~ m

» The upper bound o <%) of the above algorithm nearly matches this lower bound,
which implies that this algorithm is minimax optimal.
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Proof of Lower Bound Under the Active Setting

Let M be the above MDP, which is used to establish the lower bound in the worst-case analysis.
To satisfy the p-recoverability assumption, we scale the reward by a factor of u/H and the
resultant MDP is denoted as M,,.

w |S|H?  p|S|H
- =
Vm, (75) — E [V, (7)] = }{(V%A E[Vm(7 ﬂ)pV}{ - p—
Here - follows the lower bound of 2 (Islff) in M.
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Lower Bound Under the Offline Setting

Under the offline setting and p-recoverability assumption, for any algorithm, there exists

an IL problem such that
V(r®) —E[V(7)]

Here 7 is the output of the algorithm on this IL problem.

2
_IsiH?
~ m

f % under the active setting, which provably shows the

» Recall the minimax rate o
benefits of interactions with the MDP.
» This result establishes a clear separation between the policy value gap incurred by algorithms

under the offline setting such as BC, and algorithms which can interact with the MDP.
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The Hard Instance Under the Offline Setting

P> At the bad state, they add a “recovery” action. By taking this recover action, the agent
returns to good states.

» Due to the recovery action, this MDP satisfies pi-recoverability condition for any p > 1.

> Since the offline dataset does not cover the bad state, any offline IL algorithm fails to
identify this recovery action with a probability of 1 — ﬁ and thus suffers the same policy
value gap as in the original MDP.
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